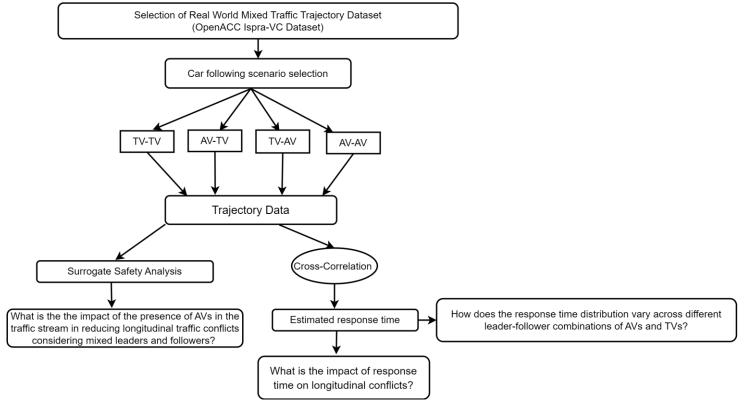
Longitudinal traffic conflict analysis of autonomous and traditional vehicle platoons in field tests

Tanmay Das (Presenter) Graduate Research Assistant Tel: 919-592-4234; Email: <u>tdas@ncsu.edu</u>

> Dr. Billy Williams Professor


Dr. Nagui Rouphail Distinguished University Professor Emeritus

Department of Civil, Construction, and Environmental Engineering North Carolina State University 909 Capability Drive, Raleigh, NC 27606

Highlights

- Investigates the impact of the presence of SAE level 2 autonomous vehicles (AVs) in the traffic stream in reducing *longitudinal traffic conflicts* using *Surrogate Safety Measures (SSMs)* on a *real-world open-source database*.
- Analysis is conducted on both *exclusive and mixed vehicle platoons*.
- The impact of vehicular *response time* on longitudinal traffic conflicts are explored.

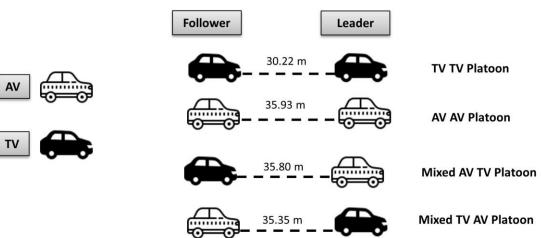
Workflow

Mixed Traffic Composition

✤ Mixed Traffic

Traffic stream contains a mixture of different vehicle types such as connected automated vehicles (CAVs), AVs, connected vehicles (CVs), and traditional, human-driven vehicles (TVs).

Autonomous vehicles (AVs):


Driverless, uses adaptive cruise control (ACC) for car-following.

Traditional vehicles (TVs):

Human driven vehicles

NC STATE UNIVERSITY

Exclusive and Mixed Vehicle Platoons

Leader		Follower			Automation		
Vehicle Type	Model	Vehicle Type	Model	Study Site	Level of AVs (SAE,2018)	Total Experimental Time (s)	Total Distance (m)
TV	Hyundai loniq hybrid 2019	TV	Kia Niro 2019	Highway	N/A	374.40	11075
AV	Mitsubishi SpaceStar 2019	AV	Ford S Max 2019	Highway	Level 2	734.80	22401
TV	Hyundai loniq hybrid 2019	AV	Ford S Max 2019	Highway	Level 2	734.80	22401
AV	Mitsubishi SpaceStar 2019	TV	Kia Niro 2019	Highway	Level 2	734.80	22401

1/17/2023 Data Source: https://data.europa.eu/data/datasets/9702c950-c80f-4d2f-982f-44d06ea0009f?locale=en 5

Brief Description of The Experiment

- Tests were scheduled for non-peak hours
- Leader was instructed to drive manually and perform occasional random deceleration and accelerations over a desired speed in a realistic way
- Shortest time headway setting for each vehicle driven by the ACC system was used
- No overtaking was performed

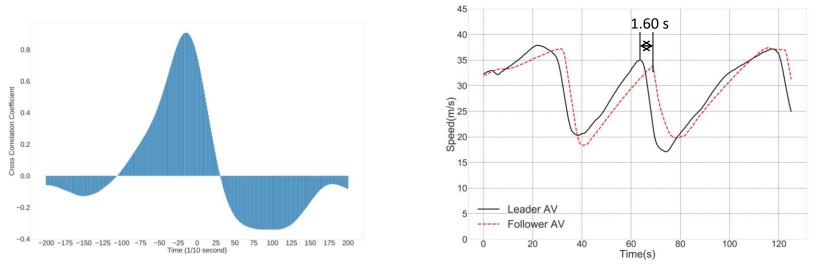
Response Time

Response time (RT) shows how long it takes for a driver to respond to a situation by accelerating, decelerating or doing nothing in response to the action of the leading vehicle.

Acceleration of the follower
$$Acceleration of the follower$$

Response of the follower lags the stimulus by follower's RT.

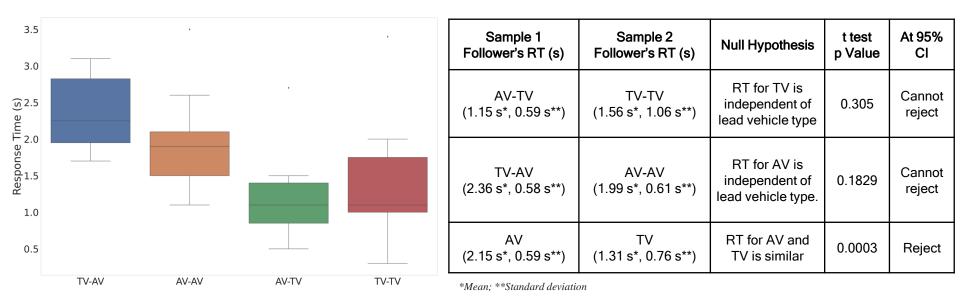
Cross Correlation


- Cross-correlation takes the two-time series and lines them up to determine the lag that produces the highest similarities between the two series.
- ★ Consider, two time series x(t) = Stimulus(t) and y(t) = Response(t + RT) lag by a time interval *RT*, where $t \in \{0, 1, 2, 3, ..., n\}$. The cross-correlation *r* at lag *d*, *r(d)*

as follows:
$$r(d) = \frac{\sum_{t} [(x(t) - \mu_x) * (y(t-d) - \mu_y)]}{\sqrt{\sum_{t} (x(t) - \mu_x)^2} \sqrt{\sum_{t} (y(t-d) - \mu_y)^2}}$$

The value of the lag with the highest correlation coefficient represents the best fit between the two series therefore the RT.

NC STATE UNIVERSITY


Response Time Estimation (AV-AV)

Cross-Correlogram

- Correlation coefficient between response of the following vehicle and the stimulus is highest (0.88) at -16(1/10)=-1.6 s.
- Similarly, we estimated response time for all other time steps for TV-AV, AV-TV and TV-TV scenario.
 1/17/2023

Response time findings

Response time for TVs or AVs was independent of lead vehicle type
 AV response time (2.15 s) was significantly higher than the TV response time (1.31 s)

Traffic Conflict and SSMs

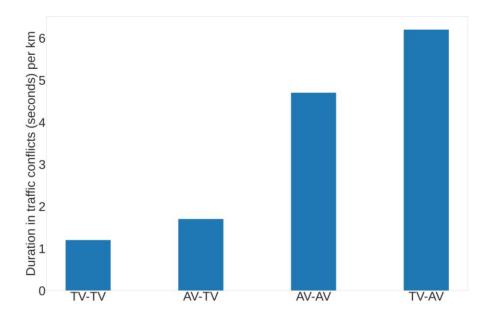
- Traffic conflict shows the probability of crash
- SSMs use pairwise velocity and spacing attributes derived from vehicular trajectories to flag or report a traffic interaction as a conflict.
- SSMs assume that the closer vehicles are to each other in terms of temporal or spatial proximity metrics, the nearer they are to a potential collision

Surrogate Safety Analysis

<u>Rear End Crash Index (RCRI)</u>: To avert a rear end crash the stopping distance of the following vehicle should be smaller than the leading vehicle. Therefore, RCRI can be mathematically expressed as follows:

 $RCR I_i(t) = \left\{ egin{array}{ll} 1, \ when \ SSD_F(t) \geq SSD_L(t) \ 0, Otherwise \end{array}
ight.$

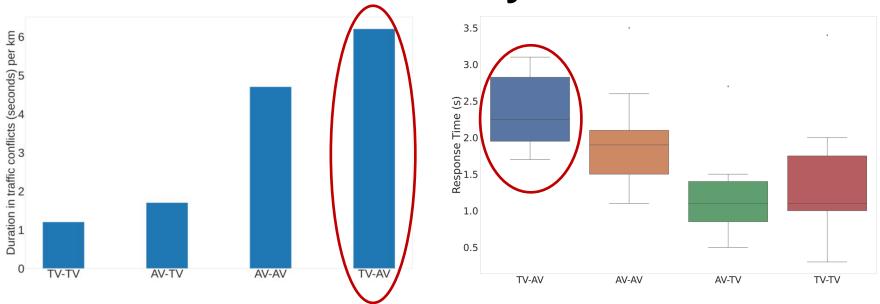
$$egin{aligned} SS\,D_L(t) &= D(t) + rac{V_L(t)^2}{d_{Lmax}} \ SS\,D_F(t) &= V_F(t) * RT_F + rac{V_F(t)^2}{d_{Fmax}} \end{aligned}$$


 RT_F s Response time of following vehicle

- RCR $I_i(t)$ mRear end crash risk index of the i^{th} (following) vehicle at time $V_L(t)$ m/sSpeed of the leading vehicle at any time instant tinstant t $V_F(t)$ m/sSpeed of the following vehicle at any time instant t
- $SSD_L(t)$ m Safe stopping distance of the leading vehicle at time tD(t)
- $SSD_F(t)$ m Safe stopping distance of the following vehicle at time t

m Inter-vehicular spacing of the vehicle pairs at time *t*

1/17/2023


Traffic Conflict Analysis Results

AV as a following vehicle reported more duration of in traffic conflicts irrespective of the leader

NC STATE UNIVERSITY

Traffic Conflict Analysis Results

The highest average response times for an AV (in the TV-AV scenario) contributed directly to the longest period of traffic conflicts per km.

Conclusion and Future Research

- ✤ The ACC equipped AVs show larger response time than TVs.
- ✤ TVs show larger variability response time than ACC equipped AVs.
- ✤ Relation of response time with traffic conflicts is significant.
- Findings are constrained to the dataset.
- More testing AVs of different brands operating in mixed is needed to make a generalization.

Published Work