Naturalistic Driving Data Baseline for ADS-Equipped Commercial Motor Vehicles

101ST TRB ANNUAL MEETING TRUCK AND BUS TECHNOLOGY SUBCOMMITTEE ACS60(5)

ANDREW KRUM JANUARY 11, 2022

U.S. Department of Transportation Federal Motor Carrier Safety Administration

VIRGINIA TECH VIRGINIA TECH

PROJECT OVERVIEW

- Research funded by the U.S. Department of Transportation, Federal Motor Carrier Safety Administration
- Driving data sources:
 - FMCSA Data Repository, Class 8 Highway Continuous Naturalistic Driving Collections
 - SmartDrive Systems, Inc., Class 8 Highway Naturalistic Driving Collection; August 2016 – August 2018
- Map data sources:
 - Topologically Integrated Geographic Encoding and Referencing (TIGER) GIS
 - NAVTEQ Maps by HERE Technologies

PROJECT OBJECTIVES

- Develop human driving data performance baselines to which automated driving system (ADS) equipped CMVs can be compared
- Utilize real-world naturalistic CMV data collected during (for revenue) cargo delivery
- Organize the performance baselines for key operational design domains (ODDs) including specific U.S. interstates (e.g., I-10)
- Develop a publicly available tool that can be used by ADS designers, government officials, and others to calculate CMV performance baselines for specific ODDs

LAGGING BASELINE EVENT DATA

LEADING BASELINE CONTINUOUS DATA

ODDs limited to interstate highways

- One ODD on All U.S. interstates
- Nine ODDs on specific interstates

OPERATIONAL DESIGN DOMAIN U.S. INTERSTATES

DATA DESCRIPTION LAGGING EVENTS

Unique CMVs in Events

ODD	Vehicles Involved in Crashes	Vehicles Involved in Near-Crashes	
All U.S.	3,497	11,098	
I-5	97	467	
I-10	223	890	
I-20	209	751	
I-35	133	327	
I-40	258	849	
I-70	186	606	
I-75	188	873	
I- 80	197	670	
I-95	205	995	

- Collected using onboard monitoring systems over 2 years (2016-2018)
- 3.44 billion U.S. interstate miles
 - 3,781 crash events
 - 16,767 near-crash events
 - 78,745 sampled behavioral events

CRASH REDUCTION VARIABLE OVERVIEW LAGGING EVENTS

ADS IMPACT ON CMV CRASHES

- 32% of all crashes were at the fault of the subject driver
- Among at-fault, 84% have a negative behavior or inattention component present
- ADS is expected to impact 84% of atfault CMV crashes
 - 29.4 crashes per 100 million
 VMT out of 110 total crashes per 100 million VMT
 - Implies ADS is only on subject CMV

Crash Rates per 100 Million VMT

DATA DESCRIPTION LEADING CASES

Interstate Exposure (1,000 VMT)

ODD (Interstate System)	Exposure by Speed (1,000 VMT)	Exposure by Lane Tracking (1,000 VMT)	Exposure by Radar Data (1,000 VMT)
All U.S.	3,121.8	1,662.1	1,314.5
I-5	7.5	3.7	3.0
I-10	146.7	84.7	83.5
I-20	43.8	21.6	16.2
I-35	10.2	4.9	4.0
I-40	141.7	69.7	55.9
I-70	40.3	17.9	21.6
I-75	26.9	12.2	7.6
I-80	49.4	22.0	29.9
I-95	123.1	63.9	37.6

- Collected using research– based continuous data while in revenue service (VTTI)
- 244 drivers across 6 study collections
- ODD: Total interstate system exposure

LONGITUDINAL DECELERATION CASES

LANE DEVIATION CASES LEADING CASES

- Both tires inside the lane (0"-21")
 - Type 1: Acceptable lane keeping
- Lane deviation 21"–33"
 - Type 2: One tire is outside the lane (0"-12")
- Lane deviation 33"-45"
 - Type 3: One tire is outside the lane (12"-24")
- Lane deviation more than 45"
 - Type 4: One tire is outside the lane (> 24")

Thank You

Full Report:

https://rosap.ntl.bts.gov/view/dot/57506

Brief:

https://ntlrepository.blob.core.windows.net/lib/82000/ 82100/82193/Naturalistic Driving Baseline CMV Repor t Final Report Research Brief 08-19-21.pdf

Andrew Krum | akrum@vtti.vt.edu

VIRGINIA TECH TRANSPORTATION INSTITUTE