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ABSTRACT 

Zero-group velocity (ZGV) modes in rails are studied through simulation and experiments. Local 
resonances associated with ZGV modes appear as distinct, sharp peaks in the frequency amplitude 
spectrum, whose resonant frequencies can serve as indicators of the local structural integrity condition of 
the rail itself, assuming that one can excite, detect, and identify wave mode type with confidence. To 
better understand these interesting modes, semi-analytical finite element (SAFE) analysis is implemented 
to compute dispersion curves of a standard rail cross-sectional shape and to identify potential ZGV points 
and backward waves. Experimental rail dynamic data are collected from a 25-meter free rail sample with 
multiple excitation-sensor configurations to understand the detectability and excitability of specific 
resonances associated with ZGV and cutoff frequency points in rails. Spatial sampling of wave 
disturbance is performed to calculate the dispersion relations experimentally via two-dimensional Fourier 
transforms (2D-FFTs). The excellent agreement between simulation and experimental results confirms the 
existence of ZGV modes and cutoff frequency resonances in rails and verifies the feasibility of using 
impulse-based dynamic tests and piezoelectric devices for the promotion of ZGV modes. 
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EXECUTIVE SUMMARY 

Zero-group velocity (ZGV) modes in rails are studied through simulation and experiments in this work. 
Local resonances associated with ZGV modes appear as distinct, sharp peaks in the frequency amplitude 
spectrum, whose resonant frequencies can serve as indicators of the local structural integrity condition of 
the rail itself, assuming that one can excite, detect, and identify wave mode type with confidence. To 
better understand these interesting modes, semi-analytical finite element (SAFE) analysis is implemented 
to compute dispersion curves of a standard rail cross-sectional shape and to identify potential ZGV points 
and backward waves through opposing senses of group and phase velocities. We employ the frequency-
domain and time-dependent finite element model to simulate responses of that free rail when subjected to 
impulse dynamic testing and harmonic excitations from piezoelectric devices. Experimental rail dynamic 
data are collected from a 25-meter free rail sample with multiple excitation-sensor configurations to 
understand the detectability and excitability of specific resonances associated with ZGV and cutoff 
frequency points in rails. Spatial sampling of wave disturbance is performed to calculate the dispersion 
relations experimentally via two-dimensional Fourier transforms (2D-FFT). The excellent agreement 
between simulation and experimental results confirms the existence of ZGV modes and cutoff frequency 
resonances in rails and verifies the feasibility of using impulse-based dynamic tests and piezoelectric 
devices for the promotion of ZGV modes. 
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1. INTRODUCTION 

Ultrasonic guided waves have been used in a wide range of non-destructive evaluation (NDE) 
applications, including damage detection (1–5) and material characterization (6–8). Ultrasonic guided 
waves are especially suitable for application to elements that are long in one direction and have a constant 
cross-sectional shape, such as steel rails in railway structures (4, 9–11). The NDE of rail structures is 
important because it can detect, characterize, and monitor the severity of internal defects to enable early 
warning of hazardous structural conditions and improve railroad safety (12). An interesting non-
propagating wave phenomenon, the zero-group velocity (ZGV) mode, occurs at the minimum frequency 
point of a certain guided mode dispersion curve, with a vanished group velocity and a finite phase 
velocity. Tolstoy and Usdin (13) noted the existence of ZGV Lamb modes and predicted that these ZGV 
points must be associated with a “sharp continuous wave resonance and ringing effect.” Moreover, 
researchers observed a ZGV Lamb mode formed by the “forward propagating” first symmetric mode (S1) 
and the “backward propagating” second symmetric mode (S2), yielding a localized resonance in the 
frequency domain (14, 15). Besides plate structures, Clorennec et al. (16) observed two ZGV resonances 
formed by the symmetric and antisymmetric modes in a thin hollow cylinder as measured by the laser 
ultrasound method. In companion with ZGV modes, cutoff frequency resonances, formed by pure 
longitudinal or transverse waves in plate structures, were also identified by resonant peaks in the 
frequency domain (17). These studies have reported solid evidence of prominent resonances associated 
with ZGV and cutoff frequency points, which could be accessible through contact sensors (18), air-
coupled transducers (19), and laser interferometers or Doppler vibrometers (15). Specifically, the resonant 
peaks in local resonance spectra are usually compared with dispersion curves or dispersion relations to 
fully understand their wave propagation mechanisms (16, 17). The local resonance spectra are generally 
obtained by collecting wave response data at the same or nearby location of the excitation as defined by 
Prada et al. (20). Also, the dispersion relations are often experimentally determined via the two-
dimensional Fourier transform (2D-FFT) on both the spatial and temporal sampling of ultrasonic 
wavefield (21).  

Local resonances associated with ZGV modes demonstrate resonant frequencies corresponding to 
minimum frequency points of specific mode branches, which are governed by geometrical and 
mechanical properties. Therefore, these resonances provide special benefits for localized NDE in a range 
of structures and materials because the stationary resonance behavior interrogates only a defined local 
region of the inspected element, and potentially is less disrupted by boundary conditions away from the 
region of interest. Cès et al. experimentally verified the effects from plate boundaries and observed ZGV 
modes “without any frequency change at a distance as close as the plate thickness from the edge” (22). 
ZGV resonant frequencies were applied to determine local thicknesses and Poisson’s ratio values in 
aluminum plates (23, 24), and a superior spatial resolution of 0.5 mm was reported (25). Holland and 
Chimenti used the air-coupled ultrasound for defect mapping with ZGV Lamb modes (26). Faëse et al. 
(27) enhanced ZGV mode generation by laser beam shaping to detect the subsurface flaws in composite 
materials. The widely adopted impact echo method (28, 29) was found to rely on ZGV modes for 
delamination detection in concrete slabs. Tofeldt and Ryden explored the existence of ZGV modes in 
plate-like concrete structures with continuously varying material properties through the thickness (30). 
Caliendo and Hamidullah leveraged the energy confinement of high-frequency ZGV modes for gas sensor 
design, which circumvented the complex free-edge resonator pattern (31). More recent progress includes 
the exploration of ZGV modes in the GHz range (32), the existence of ZGV modes in soft materials (33), 
and the adoption of elastic metamaterials to manipulate negative group velocity modes (34, 35). 

Although ZGV modes have been applied for NDE, little study or understanding of these modes has been 
developed for rail structures. This is despite the fact that such non-propagating guided modes offer 
substantial benefits for local rail steel inspection because of their potential to isolate local rail behavior 
from the influences of rail fastener, tie connection, and foundation effects when collecting data away from 
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the supports (22). The complicated cross-sectional rail shape hinders the ability to fully understand guided 
wave propagation, e.g., using dispersion curves, considering that widely used theoretical models cannot 
account for the rail shape. Furthermore, the distinct mechanics and dynamics of ZGV guided modes are 
not well understood for rails, although such understanding could empower NDE applications through 
optimal mode selection for a specific inspection task. Here, we reported the existence of multiple ZGV 
modes in a complicated rail structure, including the first ZGV mode in the vicinity of 10 kHz along with 
other higher order ZGV modes at 22, 28, and 34 kHz. We first investigate more closely the behavior of 
the first ZGV mode in a free American Railway Engineering and Maintenance-of-Way Association 
(AREMA) 115RE rail because fewer modes exist in the nearby frequency range, which simplifies our 
examination. We provide the first numerical and experimental evidence to identify the presence of 
backward waves in rails. The unique local energy trapping and minimum frequency phenomena 
associated with the ZGV mode is also identified through our numerical model. This is achieved by 
implementing semi-analytical finite element (SAFE) analysis to compute dispersion curves of a standard 
rail cross-sectional shape and to identify the type and characteristics of local resonances through the 
development of dispersion curves. A fully discretized finite element (FDFE) model is then used to 
simulate responses of the free rail cross-section when subjected to impulse-based dynamic testing (28, 
36), the results of which are confirmed by 2D-FFT analysis of experimental data. The findings shed new 
light on the applicability of ZGV modes for NDE of rail structures, especially the detection of transverse 
defects (TDs). 
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2. MATERIAL AND METHODS 

In this section, we utilize numerical models to investigate the existence of local resonances associated 
with ZGV and cutoff frequencies in free rails and the feasibility of using an impulse-based dynamic test to 
generate and detect them. 

2.1 Semi-analytical Finite Element Analysis 

While the description of elastic guided modes in isotropic plates has been well established by an 
analytical formulation of the dispersion equations (37, 38), the theory, considering complex geometry and 
the material properties, is much more complicated. It is quite challenging to express modes in a closed-
form solution, except for some simple plate-like structures with particular width-to-thickness ratios (39). 
Other simple structures like solid rods and hollow cylinders have been investigated in detail on wave 
structures (40), and reflection, transmission, and scattering characteristics (41). More recently, 
approximate dispersion curves of complex systems have been successfully achieved in the numerical 
simulations using the finite element method (FEM) and boundary element method (BEM) with the 
increasing capability of computational power, especially through the emerging commercial FEM software 
(42). However, it is still quite time-consuming for full-discretization FEM. Therefore, the hybrid of the 
normal expansion theory and FEM, the semi-analytical finite element method (43–45), has been 
developed. Due to considerable savings on computational power compared with a fully discretized 3-D 
model, SAFE analysis lends itself to simulate wave propagations in long waveguide structures (46).   

In this work, the SAFE approach was implemented to efficiently calculate ultrasonic wave propagation in 
rails. It adopts the simplification of assuming harmonic motion along the wave propagation direction 
where finite element discretization is limited only to the waveguide’s cross-section. Briefly, the wave 
dispersion solution of the system is determined by solving the associated eigenvalue problem of temporal 
and spatial frequency using standard numerical routines. Therefore, this technique not only meets the 
necessity of modeling waveguides with arbitrary cross-sectional geometries, whose exact solutions do not 
generally exist, but also relieves the computational requirements from iteratively root-searching 
algorithms (47). We obtained the dispersion curves of a free rail with a cross-section of 115-lb AREMA 
(American Railway Engineering and Maintenance-of-Way Association) rail (48) using the SAFE method. 
Nominal rail steel material properties were adopted: Young’s modulus E= 200 GPa; Poisson’s ratio ν= 
0.285; density ρ= 7800 kg/𝑚𝑚3. This model did not incorporate any material damping, considering low-
attenuation rail steels (49) and likely negligible influences on the ZGV points (50, 51). Figure 1 shows the 
wave mode dispersion solutions for the cross-sectional shape of a 115-lb AREMA rail between 8 and 40 
kHz, which reasonably covers the frequency range of rail responses when subjected to impulse-based 
dynamic testing. Only a subset of all the possible modes were observed in our experiments because of 
variations in detectability/excitability for each; those wave modes that are likely to be excited and 
detected are indicated by thick blue lines in Figure 1. In the dispersion curve solutions within the 
wavenumber-frequency domain, the zero-group velocity points are identified as the infinite-slope points 
at non-zero wavenumber (𝑣𝑣𝑔𝑔 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
, where ω is the angular frequency, and k is the angular wavenumber), 

while the cutoff frequency point is identified as intercept of each branch. Multiple ZGV and cutoff 
frequency points can be identified within the frequency range shown in Figure 2.1. While similar 
dispersion curves of standard rails have been reported by Ryue et al. (52), this is the first study that 
explores the existence of ZGV modes in rails.  
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Figure 2.1  Wavenumber–frequency dispersion curves for a free rail with standard 115-lb AREMA rail 
cross-section, where thick blue lines indicate modes observed in this study. 

Figure 2.2(a) shows the meshed standard AREMA 115RE rail cross section. Figure 2.2(b) shows the 
zoom-in calculated dispersion curves for the 115RE rail structure in the vicinity of 10 kHz, where a ZGV 
point is clearly identified by zero slope in the f-k domain at non-zero wavenumber, marked as a yellow 
triangle. The dispersion curve branch left of the ZGV point, indicated as flexural vertical 4 (FV4b), 
features negative group velocities, and a representative mode shape in terms of displacement along the 
axial direction is shown in Figure 2.2(c). The branch right of the ZGV point, indicated as flexural vertical 
3 (FV3), shows positive group velocities, and a representative mode shape is shown in Figure 2.2(e). For 
the FV4b branch, the phase and group velocities are of opposite signs, indicating the presence of 
backward waves. The energy flux density along the wave propagation direction, Px, of the representative 
FV4b and FV3 modes are shown in Figure 2(d & f). The total energy flux, calculated as the integral of Px 
over the y-z plane (53), of the specific FV4b mode is negative (-0.18), indicating energy transfer in the 
negative direction, and the total energy flux of the specific FV3 mode is positive (0.42) suggesting 
forward-propagating waves. 
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Figure 2.2  SAFE analysis results: (a) AREMA 115RE rail cross section and mesh, (b) dispersion curves 

for AREMA 115RE rail; representative normalized mode shapes for (c) an FV4b mode and 
(e) an FV3 mode; representative normalized energy flux density for (d) the FV4b mode and 
(f) the FV3 mode. 

2.2 Time-dependent Finite Element Method 

To simulate wave propagation in a free rail subjected to an impulse dynamic test (54), a 3D transient 
time-dependent finite element method analysis was applied using COMSOL. A 3-meter rail with a 115-lb 
AREMA cross-section and nominal material properties for rail steel was modeled; material damping was 
not considered. As shown in Figure 2.3, the impulse force was simulated using a squared half-cycle sine 
wave (55). The excitation was introduced on the top of the rail head at x=0, and a symmetric boundary 
condition was applied through the y-z plane at x=0. The total simulation time is 0.03s with a 2.5 
microsecond time step to avoid numerical instability (54). The out-of-plane (y-component) accelerations 
at the center of the rail head adjacent to the excitation source were extracted and processed with the fast 
Fourier transform (FFT) process to display the local resonance spectrum; the y-component accelerations 
at the center of the rail head were extracted every 1 cm over 3 meters along the wave propagation 
direction (x-axis) and processed with the two-dimensional FFT (2D-FFT) to display dispersion relations. 
We chose the center on the top surface of the rail head as the impulse and sensor locations because the 
first ZGV mode demonstrates large dynamic displacements along the vertical direction (y-axis) (56).  
Second-order prismatic elements with a maximum size of 5 mm were adopted to support discretization of 
at least 10 elements per wavelength (57). To suppress reflections from the end boundaries and focus on 
the behavior of local resonances in a very long rail, we implemented a combined wave non-reflecting 
technique using the low reflecting boundary (LRB) and 10 damping layers with linearly increasing 
damping coefficients (21), as shown in Figure 2.3. This model can simulate wave propagation in a long 
free rail by suppressing reflections from the ends of the model. 
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Figure 2.3  Time-dependent finite element model details. 

2.3 Frequency-domain Fully Discretized Finite Element Analysis 

While the SAFE results indicate multiple ZGV and cutoff frequency points in a free rail, further study is 
needed to understand whether one can observe them in a realistic setting with a customized input to the 
system. In this section, we simulate impulse-based dynamic testing (28, 36) on a free rail to understand 
the existence of ZGV modes. Modeling wave propagation in frequency response analysis offers many 
advantages over time-domain analysis, with considerably less computational time and CPU memory (57, 
58). This study also developed a frequency-domain finite element model using the commercial software 
COMSOL to simulate wave propagation in a free rail. A 3-meter rail with a 115-lb AREMA cross-section 
and nominal material properties was modeled, as shown in Figure 2.4(a). Like the SAFE model, the finite 
element models did not incorporate any material damping or model updating. It also specifies the 
coordinate system adopted in this study: the z-axis aligns with the rail axial and wave propagation 
direction; the x- and y-axis represent the horizontal and vertical directions, which are mostly used to 
describe positions or motions in a cross-sectional plane. Considering the frequency band of interest (8 to 
40 kHz), second-order prismatic elements with a maximum size of 5 mm were adopted to provide 
discretization of at least 10 elements per wavelength (57). The impulse excitation was simulated using a 
squared half-cycle sine function in the time-domain (55) and converted to the frequency-domain 
amplitude spectrum with the Fourier transform, as shown in Figure 2.4(b).  
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Figure 2.4  FDFE model (a) 115-lb AREMA rail geometry, mesh settings, and coordinate system; (b) 

forcing function for impulse excitation; (c) Impact and receiver positions. 

2.4 Experimental Setup 

A 25-m long, 115-lb AREMA rail supported by timber ties every 6.1 m was tested, as shown in Figure 
2.5(a). Impulse-based dynamic tests were carried out at the center portion of the rail sample. We attached 
four accelerometers to measure the wave motion in response to a sequence of impact events applied along 
the rail direction (55). The schematic diagram of the impulse-based dynamic test is shown in Figure 
2.5(b). Based on simulation results, four accelerometers (PCB model 353B33) were attached to a rail 
sample at receiver positions A through D around the rail cross-section at the same axial location, as shown 
in Figure 2.5(b). A 16-mm diameter stainless steel impactor was used to induce impulse events at the 
center of the rail head (A) and the neutral axis on the rail web (D). The impulse events were applied along 
the wave propagation direction with a spatial interval of 5 cm over a total length of 5 meters. This results 
in a wavenumber resolution of 0.2/m, which can sufficiently capture the behaviors in the wavenumber 
domain. The acceleration signals were first passed through a signal conditioner (PCB 482C), then 
digitized by a PicoScope (PicoScope 4824), stored in the local hard drive, and processed using MATLAB 
signal processing toolbox. Reciprocity is assumed such that the proposed experimental setup can produce 
a temporal and spatial sampling of a wavefield generated by a single impact. Also, the manual impulse 
excitations were assumed to be generally consistent in the frequency domain.  
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Figure 2.5  (a) Field test setup, and (b) the schematic diagram of the multiple-impact data collection. 
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3. RESULTS AND DISCUSSION 

3.1 Backward Propagation Verification 

The local dynamic response was obtained by extracting nodal accelerations 5 mm (1 element size) away 
from the rail head excitation (x =5mm), which is transformed to the amplitude spectrum using FFT. We 
also spatially sampled the dynamic responses along the axial direction every 1 cm over a 3-meter length, 
and the acceleration data were used to compute dispersion relations of the free rail using 2D-FFT. The 
dispersion curves of a free rail under synthetic impulse excitation is shown in Figure 3.1(a) overlaid with 
dispersion curves generated by the SAFE analysis (red dotted lines). A ZGV mode at 10.1 kHz and 1.1 
1
𝑚𝑚

 is identified by the characteristic zero-slope point and a non-zero wavenumber feature. Because all 
observed dynamic responses align with the SAFE model predictions, we assert that the combined non-
reflecting end boundaries in the model suppress global vibrational modes set up by finite-length samples 
and thus adequately represent continuous rail. The local resonance spectrum shows a spectral peak 
(resonance) formed by the ZGV mode at 10.1 kHz, but also a higher frequency resonance that 
corresponds to the cutoff frequency point of the FV4b branch at 10.3 kHz. Since only the wavefield along 
the x+ direction was sampled in the numerical simulation, the dispersion relations shall only reveal wave 
modes with positive-valued group velocities (𝑣𝑣𝑔𝑔 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
> 0), as shown in Figure 3.1(a). Moreover, the 

numerical model results demonstrate that the FV4b branch, with 𝑘𝑘 ∈ [−1.1, 0] 1
𝑚𝑚

 , is captured with 

positive group velocity but negative phase velocity, while the FV3 mode branch with k > kZGV (1.1 1
𝑚𝑚

) in 
the vicinity of the ZGV point is clearly identified with positive group and phase velocities. Note that this 
dispersion relation characteristic of positive group velocity and negative phase velocity represents a 
unique signature of backward wave of the ZGV mode. 

The experimental dispersion relations and local resonance spectrum obtained from the free rail is shown 
in Figure 3.1(b). A dominant vibrational mode is produced at 10.3 kHz, as shown in Figure 3.1(b). The 
zoomed-in dispersion relation reveals a clear zero-slope point at 10.3 kHz and 1.1 1

𝑚𝑚
, which is similar to 

the ZGV mode predicted by numerical simulation. Based on reciprocity, we performed the spatial 
sampling along x+ direction of the wave propagation direction to be consistent with the numerical model. 
In the region with k > 0, the FV3 branch with positive group and phase velocities is identified; in the 
region with k < 0, the FV4b branch with positive group velocity and negative phase velocity is clearly 
observed. Therefore, we verified the existence of backward waves near the ZGV mode in the free rail.  
The experimental data collection was performed with a finite length of rail, thereby reflections or negative 
group velocity components from supports and ends of the free rail are expected, as shown in Figure 3.1 
(b).  

The behavior of backward waves is further examined by extracting slices of f-k domain dispersion 
relations for both the numerical model and experiment, as shown in Figure 3.2(a & b). Both spectra 
demonstrate two dominant peaks (resonances) with comparable absolute wavenumbers corresponding to 
the forward-propagating and backward modes (FV3 and FV4b); a clear forward-propagating mode is also 
seen (k ≈ 4.1 1

𝑚𝑚
). The dominant components with a negative-valued wavenumber provides further 

evidence for the existence of backward waves around the ZGV frequency. To further explore the 
characteristics of the ZGV mode in the vicinity of 10 kHz, we plotted the spatial distribution of amplitude 
spectra based on out-of-plane (y-component) accelerations from the numerical simulation results. As 
shown in Figure 3.2(c), the response shows a series of discrete antinodes of spectral amplitude with 
increasing distance. Most of the spectral amplitude response is trapped close to the excitation source 
within approximately a quarter of the ZGV wavelength. The distance between adjacent spectral anti-
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nodes is approximately half the wavelength of the ZGV modes ( λ
2
 ≈ 0.45 m). Similar to the S1-S2b ZGV 

Lamb mode, the ZGV frequency is identified within half the wavelength from the source due to its non-
propagating nature, and higher frequency components in the far field are attributed to slowly propagating 
guided waves.  

 

 

Figure 3.1  (a) Numerical simulation results of dispersion relations and normalized local resonance 
spectrum showing a ZGV mode at 10.1 kHz. SAFE results are indicated by red dotted lines. 
(b) Experimental results of dispersion relations and normalized local resonance spectrum 
showing a ZGV mode at 10.3 kHz. The contrast of dispersion relations in the zoomed-in 
portion was magnified separately for improved illustration. Figure 6 
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Figure 3.2  Spatial Fourier transform (normalized) of the temporal-spatial sampled data close to the ZGV 
frequency (~10 kHz) based on (a) numerical simulation and (b) experiment. (c) Spatial 
distribution of the normalized displacement amplitude nearby the 10.1 kHz ZGV mode based 
on numerical simulation results. 

3.2 Frequency-domain Fully Discretized Finite Element Analysis Results 

To understand the existence and detectability of ZGV modes in a free rail, four receiver positions were 
considered, including three on the rail head (A, B, and C) and one at the neutral axis of the rail web (D), 
as shown in Figure 2.4(c). The receiver positions were designed to capture vertical and horizontal 
dynamic responses on the rail head and web (59), where both the symmetric and antisymmetric modes 
can be captured. For practicality and test convenience, two impact positions were introduced to the center 
of the rail head (A) and the neural axis on the rail web (D), both on one end of the model at z=0. A 
symmetric boundary condition was applied at the x-y plane of the end at z=0 for simulation efficiency. To 
simulate rail dynamic responses in an impulse vibration test, the constitutive relations were solved in the 
frequency domain to obtain stationary solutions in response to a customized temporal excitation (57). The 
rail dynamic responses to the synthetic impulse applied at A and D were simulated, respectively. The out-
of-plane complex-valued accelerations of all the receiver positions (A through D) along the wave 
propagation direction (z-axis) were extracted with a 2-Hz step in specific frequency bands identified via 
previous SAFE analysis. To mimic the measurements from uniaxial accelerometers, the vertical 
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accelerations (y components) at receiver positions A and B, along with the horizontal accelerations (x 
components) at C and D, were extracted locally and along the wave propagation direction. Local 
resonance spectra can be obtained by extracting the nodal accelerations within the same cross-section of 
the excitation (z=0). Also, we spatially sampled the rail dynamic responses along the rail axial direction 
using a resolution of 1 cm over a 3-meter length. Fast Fourier transforms (FFTs) of the spatial sampled 
nodal complex acceleration set were carried out to compute the dispersion relations of the free rail in the 
wavenumber-frequency (k-f) domain. 

 
Figure 3.3  FDFE results of local resonance spectra with the A-A test configuration showing (a) ZGV 

mode at 10.1 kHz, (c) cutoff frequency resonance at 15.2 kHz, and (e) cutoff frequency 
resonance at 33.2 kHz; FDFE results of dispersion relations in k-f domain showing modes 
corresponding to (b) ZGV mode at 10.1 kHz, (d) cutoff frequency resonance at 15.2 kHz, and 
(f) cutoff frequency resonance at 33.2 kHz. SAFE results are indicated by red dashed lines. 
Figure 7 

Figure 3.3 presents FDFE results for three of the excited and detected modes, wherein the impulse 
excitation forcing function was applied at the center of the rail head (location A) at z=0. The out-of-plane 
accelerations (y-axis indicated in Figure 2.4) were sampled at the center of the rail head (location A) from 
multiple uniformly spaced positions along the wave propagation direction. We defined this as the “A-A” 
test configuration. The collected signal set was used to compute local resonance spectra (with data 
gathered at z=0), as shown in Figure 3.3(a, c, & e). The y-axis of the spectra presents spectral amplitude 
normalized with respect to the maximum value within each frequency range. Three dominant resonances 
were identified at 10.1 kHz, 15.2 kHz, and 33.2 kHz, respectively, along with neighboring low-amplitude 
peaks with each. Moreover, the dispersion relations in the k-f domain, which were obtained by computing 
spatial FFT of the acceleration data, are shown in Figure 3.3(b, d, & f). The dispersion curves generated 
by the SAFE analysis are shown as overlaid red lines. The y-axis of the dispersion relations is expressed 
as a wavenumber in 1/m. Excellent agreements between FDFE and SAFE analysis are seen in Figure 
3.3(b, d, & f). An infinite-slope point with a non-zero wavenumber is seen in Figure 3.3(b) at 10.1 kHz, 
indicating a zero group velocity and a finite phase velocity. The resonances at 15.2 kHz in Figure 3.3(d) 
and 33.2 kHz in Figure 3(f) exhibit cutoff frequency point characteristics (k = 0). These phenomena were 
adopted by previous researchers (16, 17, 20) to identify ZGV modes and cutoff frequency resonances. The 
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resonant frequencies in the local resonance spectra [Figure 3.3(a, c, & e)] align well with either the 
predicted ZGV or cutoff frequency points in the k-f domain plots [Figure 3.3(b, d, & f], thus enabling the 
identification of each resonance type. 
 

 

 

Figure 3.4  FDFE results obtained with the D-C test configuration showing cutoff frequency resonance at 
10.2 kHz (a) and (b); and FDFE results obtained with the D-A test configuration showing 
ZGV mode at 10.2 kHz (c) and (d); cutoff frequency resonances at 15.2 kHz (e) and (f); ZGV 
mode at 22.7 kHz (g) and (h); ZGV mode at 28.3 kHz (i) and (j); and ZGV mode at 33.2 kHz 
(k) and (l). SAFE results are indicated by red dashed lines. Figure 8 

Figure 3.4 shows FDFE results where the impulse excitation was applied at the neutral axis of the rail 
web (D) at z=0 for five of the excited modes. The received out-of-plane accelerations at C and A were 
sampled along the z-direction, defined as test configurations D-C and D-A, respectively. As shown in 
Figure 3.4(a & b), a prominent resonance at 10.2 kHz was found in the normalized local resonance 
spectrum when the D-C test configuration was used, which corresponds to a cutoff frequency. This 
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specific mode does not appear in the local resonance spectra of the test configuration A-A shown in 
Figure 3.3(a & b), nor when the D-A test configuration is used, as shown in Figure 3.4(c & d); this 
illustrates wave mode excitation variability that depends on test configurations. Using the D-A test 
configuration, ZGV modes at 10.1 kHz, 22.7 kHz, 28.3 kHz, and 33.7 kHz were identified [Figure 3.4(c, 
d & g through l)], along with cutoff frequency resonances at 15.2 kHz [Figure 3.4(e & f)] and 33.2 kHz 
[Figure 3.4(k & l)]. While the ZGV mode at 10.2 kHz and cutoff frequency resonances at 15.2 kHz and 
33.2 kHz can be excited and clearly identified using the A-A and D-A configurations, only the D-A 
configuration provides the excitation of ZGV modes at 22.7 kHz, 28.3 kHz, and 33.7 kHz. The numerical 
study confirmed the existence of the ZGV modes and cutoff frequency resonances in a free rail with 
distinct test configurations, which is further explored in the following experimental study.   

3.3 Experimental Results 

The existence of ZGV modes and cutoff frequency resonances identified in Section 3.2 is verified 
experimentally in this section. Since detecting these resonances relies on the best combination of impact 
and receiver positions, the influence of receiver positions was first studied by alternating receiver 
positions (A through D) with a fixed impact position (D) regarding the cutoff frequency resonance at 15.5 
kHz. The behavior of this experimentally observed mode shows an excellent agreement with the 
simulation results in Figure 9(e & f). Specifically, Figure 3.5(a) demonstrates the resonant peak of 15.5 
kHz in the local resonance spectrum obtained with the configuration D-C, which is consistent with the 
cutoff frequency point illustrated in the k-f domain in Figure 3.5(c). Figure 3.5(b) presents the mode 
shape in normalized total displacements, indicating that the receiver positions at D and C can better 
capture this specific mode than receivers at A and B. The receiver at D can capture displacements with the 
highest amplitude, followed by the receiver at C to pick up around 40% of the largest amplitude, whereas 
receivers at A and B can detect the least amplitude of motions. The observed signal strength of the mode 
with the cutoff frequency point in the k-f domain is generally consistent with the implications of the mode 
shape, as shown in Figure 3.5(c). The x-axis is the frequency, and the y-axis represents the wavenumber. 
The amplitude is normalized with respect to the maximum amplitude of results from all four 
configurations, where the green dashed lines are introduced to emphasize the targeted mode. It shows the 
cutoff frequency resonance has the strongest response with D-D configuration, the second most 
substantial response given by D-C, and correspondingly those from D-A and D-B yield dispersion 
relations with the lowest contrasts. Therefore, one can use SAFE-predicted mode shapes to improve 
modal detectability by optimizing receiver positions. In this study, rail foot motions in the mode shape 
were visually grayed out to emphasize motions of the rail head and web, which support direct detection of 
transverse defects. 

The influence of impact position was examined by sweeping impact positions with a fixed receiver 
position. Figure 3.6 presents local resonance spectra and dispersion relations with a fixed receiver at A 
and alternating impact positions (A and D). Under the A-A configuration, only a cutoff frequency 
resonance was identified at 33.9 kHz in the local resonance spectrum and k-f domain in Figure 11(a & b), 
which is consistent with simulation results in Figure 8(e & f). Alternatively, the D-A configuration yielded 
both the cutoff frequency resonance and ZGV mode. As shown in Figure 11(c & d), two resonant peaks 
were identified in the local resonance spectrum, corresponding to the cutoff frequency point and the 
infinite slope point with non-zero wavenumber in the k-f domain, respectively. Such a phenomenon was 
confirmed by simulation results in Figure 9(k & l). Moreover, both modes have similar mode shapes in 
terms of normalized displacement along the y-direction, with the largest displacement located at A [Figure 
11(e & f)]. All the receivers used in this study were uniaxial accelerometers. Therefore, the mode shape in 
terms of vertical displacement was studied to understand the detectability of the specific mode when 
collecting at position A. 
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Figure 3.5. Cutoff frequency resonance at 15.5 kHz: (a) local resonance spectrum obtained using the D-C 
test configuration; (b) expected mode shape and receiver positions (geometry in “mm” and normalized 
displacement presented in color); (c) dispersion relations in k-f domain with four test configurations.  
Green dashed lines are added to guide mode identification. Figure 9 

Figure 3.6. Cutoff frequency at 33.9 kHz: (a) local resonance spectrum and (b) dispersion relations with 
the A-A test configuration; ZGV mode (34.6 kHz) and cutoff frequency resonance (33.8 kHz): (c) local 
resonance spectrum and (d) dispersion relations with the D-A configuration; (e) expected mode shape for 
the cutoff frequency resonance at 33.8 kHz along y-direction; (f) expected mode shape for the ZGV point 
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at 34.6 kHz along y-direction where geometry in “mm” and displacement in color normalized between 0 
and 1. Green dashed lines are added to guide mode identification. Figure 10 

Cutoff frequency resonance and ZGV mode in the vicinity of 10 kHz were identified through distinctive 
impact-receiver configurations. Figure 3.7 shows two experimentally identified resonances close to 10 
kHz: a cutoff frequency resonance at 10.4 kHz [Figure 12(a & b)] and a ZGV mode at 10.3 kHz [Figure 
12(c & d)]. The cutoff frequency resonance was obtained using the D-C configuration, which is consistent 
with the simulation prediction in Figure 8(a & b). Figure 3.7(a) demonstrates the local resonance 
spectrum with a resonant peak at 10.4 kHz, which was further confirmed as a cutoff frequency resonance 
in the k-f domain in Figure 3.7(b). Figure 3.7(e) shows the mode shape close to the cutoff frequency point 
in terms of normalized displacement along the x-direction. It suggests that the plausible receiver position 
for comprehending this cutoff frequency resonance is position C by the side of the rail head. On the other 
hand, a ZGV mode located within the same frequency band was excited using the A-A configuration. It is 
notable that another resonant peak associated with the cutoff frequency point connecting to the ZGV 
mode was also identified, which agrees with the FDFE results in Figure 8(a & b). Based on its mode 
shape in terms of normalized displacement along the y-direction shown in Figure 3.7(f), the vigorous 
displacement amplitude at the rail head (A) confirms the current acquisition configuration as the best 
candidate to achieve ZGV at 10.3 kHz. Again, directional mode shapes were selected since the adopted 
accelerometers are mostly sensitive to out-of-plane motion. The impulse excitation on D and A effectively 
promoted the anti-symmetric [Figure 3.7(e)] and symmetric [Figure 3.7(f)] motions, respectively. Besides 
the discussed resonances, there were multiple resonant peaks in the local resonance spectra within this 
frequency band, which are potentially global vibrational modes induced by the broadband impact and 
boundary conditions. 

 
Figure 3.7  Cutoff frequency resonance at 10.4 kHz: (a) local resonance spectrum and (b) dispersion 

relations with the D-C test configuration; ZGV mode at 10.3 kHz: (c) local resonance 
spectrum and (d) dispersion relations with the A-A configuration; (e) expected mode shape in 
x-direction of the cutoff frequency resonance at 10.4 kHz; (f) expected mode shape in y-
direction of the ZGV mode at 10.3 kHz where geometry in “mm” and displacement in color 
normalized between 0 and 1. Green dashed lines are added to guide mode identification.  
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Furthermore, we also discovered the ZGV modes in the vicinity of 22 kHz and 29 kHz, both using the D-
A configuration. As shown in Figure 13(a & c), the ZGV mode at 22 kHz demonstrates a clear resonance 
and aligns with the corresponding minimum frequency point in the k-f domain. However, the ZGV mode 
at 28.9 kHz is relatively weak and almost buried within the noise floor, as shown in Figure 3.8(c). The 
corresponding dispersion relations in Figure 3.8(d) also show a weak contrast, suggesting a low 
detectability/excitability given the current test configuration. In general, the discrepancy in terms of 
resonant frequencies between simulation (Figures 8 & 9) and field tests (Figures 10 through 13) are 
attributed to the uncertainties of material properties led by a low-temperature field environment (around -
4⸰C) and the support conditions. 

 
Figure 3.8. ZGV mode at 22.0 kHz collected with the D-A test configuration: (a) local resonance 
spectrum and (b) dispersion relations; ZGV mode at 28.9 kHz collected with the D-A test configuration: 
(c) local resonance spectrum and (d) dispersion relations. Green dashed lines are added to guide mode 
identification. Figure 11 

We are particularly interested in the transverse defect detection of rails. According to the Federal Railroad 
Administration, the leading causes of train accidents in the category of track failures include detail 
fracture, transverse fissure, and compound fissure (60). They are generally referred to as transverse 
defects, which develop in a plane parallel to the cross-sectional area of the rail head (61). Effective 
detection of TDs is critical for rail accidents and derailment prevention (62, 63). While rail surface defects 
and shelling can prevent the detection of TDs by interfering/blocking the transmission of ultrasonic bulk 
waves, ZGV modes in rails could provide a solution for rail defect detection even with the presence of 
surface conditions. We anticipate that the transverse defects would alter the local resonance spectrum by 
introducing new evanescent waves due to interactions with local discontinuities (64), which differ from 
the ZGV modes from pristine rail segments. The potential of using ZGV modes for rail NDE employing a 
simple impulse dynamic test is shown in Figure 3.5. By impacting the top of the rail head (A) and 
measuring acceleration at the neutral axis of the rail web (D), three prominent resonance peaks were 
identified around 15 kHz, 22 kHz, and 34 kHz in the local resonance spectrum, as shown in Figure 3.9(a). 
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Using the dispersion relations built up by the experimental data shown in Figure 3.9(b), these resonances 
were further confirmed to be associated with cutoff frequency resonances at around 15 kHz and 34 kHz, 
and the ZGV point around 22 kHz. These resonance frequencies would shift because of variations in 
structural integrity (65–68), which thereby lend themselves as effective tools to detect the presence of 
defects and material property changes. Furthermore, the wheel-rail interaction could operate as a 
broadband excitation (20 to 120 kHz) (63) on the rail head (A). Thus, our study offers potential for 
passive rail defect detection leveraging the natural ultrasonic source and local resonances, where local 
resonance spectra could be accessible through contactless or contact sensors on the rail web (D) (4, 63). 

 

  

Figure 3.9. Experimental results obtained from the A-D test configuration: (a) local resonance spectrum, 
and (b) dispersion relations in k-f domain. Figure 12 
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4. PIEZOELECTRIC ELEMENTS FOR LOCAL RESONANCE  

This report also presents a novel approach to generating ZGV and cutoff frequency resonances in both 
free rails and continuous welded rails (CWRs). Piezoelectric elements, such as lead zirconate titanate 
(PZT), have been widely used for non-destructive evaluation and structural health monitoring (SHM) 
(69–72). PZT has a high piezoelectric coefficient d33 but a low piezoelectric voltage coefficient g33, 
providing a strong emission efficiency and consistent excitation (73). A recent study shows that a bonded 
PZT patch can promote and extract ZGV modes and cutoff frequency resonances in a rectangular bar, 
where the PZT acts as both excitation source and sensor (74). Here, we use PZT patches as the source due 
to their reproducible excitation and applicability on large and complex structures. To understand the wave 
propagation characteristics in rails when subjected to PZT excitations, we establish numerical models 
using the SAFE and FDFE methods.  

A fully coupled multiphysics finite element model was developed using COMSOL solid mechanics and 
electrostatics modules to investigate wave propagation phenomena and extract local vibrations and 
associated local resonances using PZT excitations. Frequency response analysis was used to compute the 
steady-state solution of wave propagation, which offers advantages over time-domain analysis, such as 
reduced computational time and CPU memory. The model was configured with a 3-m rail having a 115-lb 
AREMA cross-section and nominal material properties; the coordinate system adopted for the study was 
defined with the x-axis aligned with the rail axial and wave propagation direction, and the y-axis 
representing vertical directions. The PZT was assumed to be perfectly bonded to the rail surface. For 
simulation simplicity, a square PZT was used, each with a length of 11.70 mm, width of 10.50 mm, and 
thickness of 2.10 mm, with nominal piezoelectric material properties of 850 Navy II PZT obtained from 
APC International, Ltd. The PZT was grounded at the bottom surfaces, while the terminal (electric power 
source) was connected to the top surfaces of the PZT. To investigate the existence and detectability of 
ZGV modes in a free rail, three FDFE models were established with the PZT patch placed at three 
different excitation locations, including two on the rail head (A and B) and one at the neutral axis of the 
rail web (C), with the same positions for receiving signals, as shown in Figure 4.1. To reduce 
computational costs, a half model was established with a symmetric boundary condition on the y-z plane 
at x=0, and the PZT patch was placed right over the symmetric boundary. The PZT was meshed with 
tetrahedral elements using a mesh size of 1.0 mm, while the rail was meshed with second-order prismatic 
elements with a maximum size of 5 mm.  

To study the dynamic responses of the rail when the PZT is subjected to a harmonic excitation of electric 
potential, three numerical models were carried out for PZT locations at A, B, and C from 40 to 80 kHz. 
The PZT was used to give both in-plane and out-of-plane excitation to the rail. The frequency resolution 
was set as 5 Hz within narrow bands of targeting modes and as 50 Hz for other frequency ranges. Out-of-
plane complex-valued accelerations of all receiver positions (A through C) along the wave propagation 
direction (x-axis) were extracted. To mimic measurements from a uniaxial ultrasonic sensor, vertical 
accelerations at receiver position A and out-of-plane accelerations at B and C were locally extracted along 
the wave propagation direction. Local resonance spectra were obtained by extracting nodal accelerations 
within the same cross-section of the excitation (x = 0). In addition, the rail dynamic responses were 
spatially sampled along the rail axial direction with a resolution of 1 cm over a 3-m length. FFTs of the 
spatial sampled nodal complex acceleration set were performed to compute the dispersion relations of the 
free rail in the wavenumber-frequency (k-f) domain. The dispersion relations were compared to the 
dispersion curves calculated from SAFE. Overall, the simulation results can provide valuable insight into 
rail behavior when subjected to PZT excitation in different locations. The obtained local resonance 
spectra highlight the presence of local resonances within the rail, while the dispersion relations provide 
useful information about the wave propagation characteristics of the free rail. 
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Figure 4.1  FDFE model configuration: (a) 115-lb AREMA rail geometry and exciting and receiving 
position, and (b) spatial sampling demonstration. Figure 13 

Three FDFE models with different PZT locations were established to simulate the rail response subjected 
to PZT excitation over a full frequency range. Figure 4.2(a) displays the dispersion curves in the 
wavenumber-frequency (k-f) domain, acquired from the FDFE model by computing spatial FFT of the 
acceleration data. The vertical accelerations (y-axis indicated in Figure 4.1) were sampled at the center of 
the rail head (location A) from multiple uniformly spaced positions along the wave propagation direction 
when the PZT was placed at location B. This was defined as the “B-A” test configuration. The dispersion 
curves generated by the SAFE analysis are overlaid as red lines. The y-axis of the dispersion relations is 
expressed as a wavenumber in 1

𝑚𝑚
. Figure 4.2(a) demonstrates an excellent agreement between FDFE and 

SAFE analysis, and only a subset of all possible modes was present in the dispersion curve with the B-A 
configuration due to variations in detectability/excitability for different modes. The acceleration data 
acquired at x = 0 were used to compute local resonance spectrum, as shown in Figure 4.2(b). The y-axis 
of the amplitude spectrum presents spectral amplitude normalized with respect to the maximum value. It 
is known that a zero-group velocity point in the dispersion curve will behave as an infinite-slope point 
with a non-zero wavenumber, indicating a zero-group velocity and a finite phase velocity. A cutoff 
frequency resonance can be found when the wavenumber k = 0 (20). Therefore, we can identify two ZGV 
modes at 52.7 and 66.5 kHz, along with five cutoff frequency resonances at 40.2, 46.1, 63.4, 70.1, and 
79.8 kHz. The resonant frequencies in the local resonance spectrum [Figure 4.2(b)] are well aligned with 
the predicted ZGV or cutoff frequency points in the k-f domain plots, thus enabling the identification of 
each resonance type. The numerical model results from the other test configurations also demonstrated 
similar local resonance phenomenon. Our numerical investigation confirms the feasibility of using PZT 
patches to generate ZGV modes and cutoff frequency resonances in a free rail. These findings are further 
examined in the subsequent experimental study. 
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Figure 4.2  FDFE results of (a) dispersion relations in k-f domain from 40 kHz to 80 kHz using B-A 
configuration, and (b) corresponding local resonance spectrum.  
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5. CONCLUSIONS 

In this report, we study unique and important wave propagation characteristics of a ZGV guided wave 
mode in typical rail steel structures. We demonstrate that rails subject to mechanical impulse readily 
support ZGV modes; in particular, the backward wave FV4b mode branch near the ZGV point 
demonstrates group and phase velocities with opposite signs. Experimental results confirm that 
mechanical impulse-based dynamic tests can excite a localized ZGV resonance in a free rail, which is 
formed by the interference of two opposite traveling modes. This ZGV resonance demonstrates local 
energy trapping and minimum frequency at the ZGV frequency. This study provides a deeper 
understanding of the underlying physics of ZGV modes in free rails, which potentially opens up a new 
avenue for rail inspection and monitoring based on mechanical wave propagation. 

We also study ZGV guided modes in a free rail having a 115-lb AREMA rail section via numerical 
simulations and experiments, where the ZGV modes and cutoff frequency resonances are identified and 
distinguished. The SAFE analysis provides a comprehensive view of the dispersion curves, identifying 
the ZGV and cutoff frequency points within the 10–40 kHz frequency range of interest. Given the 
geometrically complicated rail cross-section shape, detectability and excitability are investigated. The 
feasibility of using the piezoelectric device to promote local resonances from 40 to 80 kHz is studied via 
the established numerical model.   
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