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ABSTRACT 

A theoretical framework is developed for applying the material point method (MPM) to 
problems of modeling natural hazard effects on several representative geometries. Following an 
outline of the general methodology, in which the structural system is replaced by a combination 
of integrated Lagrangian point masses that can move through Eulerian space, examples are 
shown for 1) the large deformation behavior of beam-like structures, 2) the impact between two 
particles, and 3) the failure of a granular slope. Key aspects of this work and approach include 
the ability to model large deformations, the ease of incorporating nonlinear constitutive relations, 
the ability to model everything from either continuous solids to granular media, and an approach 
to model multiple materials in the same analysis. Eventually, these computational tools can be 
combined with imaging methods to track the analysis of the original physical system mapped to 
an MPM domain using point cloud, rather than continuous, photographic imaging.  
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1. INTRODUCTION 

Floods, landslides, and debris flows are more common every year as a result of a variety of 
issues, including global climate change, ecological and environmental imbalances, rising human 
density, urbanization, deforestation, and desertification. Additionally, both the population 
affected, and the resulting financial losses are growing.  

A river’s flow may be blocked by landslides and debris flows brought on by severe rains or 
earthquakes, which can naturally construct a landslide dam. One of the most significant natural 
hazards in mountainous areas worldwide is the formation and failure of landslide dams. Flooding 
from a landslide dam could inundate an area upstream that is at risk of submersion while 
flooding from a probable dam failure could occur downstream. To assess the flooding area and 
potential hazards downstream in the case of catastrophic failure of a landslide dam, the 
subsequent outflow hydrograph must be forecasted. Only then can proper safety precautions be 
taken. Subsequently, various research projects have attempted to define the processes, hazards, 
and mitigating measures associated with landslide damming and failure [3]. 

A landslide dam might last anywhere from a few seconds to a few thousand years. It is very 
challenging to forecast whether or when a dam may fall once it has formed. Therefore, for 
efficient hazard management, it is crucial to understand how the characteristics of a landslide 
dam affect the peak output of the ensuing dam-break floods. Understanding the temporal and 
spatial scales on which such occurrences occur is crucial for managing threats. Numerous earlier 
investigations on landslide dams have mostly been descriptive and resulted in a wealth of case 
studies and inventory that are well-documented [14, 15] Recent research has concentrated on 
quantitative techniques for identifying the post-formation development, particularly the controls 
on dam lifetime [18, 34, 35, 41, 46]. 

A landslide dam may suddenly collapse due to overtopping gradually over time or because of 
erosion. Even though there has been much engineering research on human-made dams, the 
failure mechanisms of landslide dams are rather well understood, but there has been very little 
direct observation of these failure processes. When compared with erosion brought on by 
overtopping, the peak discharge caused by a rapid dam collapse is very high. Nevertheless, a 
deep understanding of the dam failure mechanism and measured data are still lacking. Despite 
significant variations in dam shape and material qualities, landslide dam failure is still routinely 
treated as a homogenous earthen dam failure because the mechanism of breach generation is 
thought to be quite similar. The majority of the currently used models are suitable for landslide 
dam overtopping failure. 

A landslide dam’s catastrophic failure could happen soon after it is formed. For the management 
of dam-break flood dangers and to choose appropriate mitigation measures, including 
evacuation, quick forecasting of the possible peak discharge is required. Using empirical 
regression relationships based on the amount of the dammed lake and the estimated height of the 
dam, preliminary peak discharge may be calculated. After gathering precise data on dam 
geometry, soil qualities, topography, and inflow discharge, physical-based computer models can 
be applied. 
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Although dam failure is a significant aspect of this work, it is also important to be able to 
understand and represent the basic behavior of either continuous solids and particles/structures 
under impact with each other. Finite element models are useful for these sorts of structures, but 
one of the benefits of the MPM is to be able to model these basic structural elements. 

The purpose of this research is to develop a graphical relationship to predict landslide failure 
modes caused by landslide dam failure due to overtopping and sliding. This will be 
accomplished by numerically simulating a non-cohesive, homogeneous landslide. 
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2. THEORY 

In this section, the basic elements of the material point method (MPM) are described. 
Historically, there are several other mesh-free/mesh-less frameworks available. Since starting 
with the early smoothed particle hydrodynamic (SPH), which Gingold and Monaghan [19] and 
Lucy [39] presented, there have been issues with modeling astrophysical processes. Liszka and 
Orkisz [37] later created a finite difference technique, while Nayroles, Touzot, and Villon [43] 
created the diffuse element method (DEM), which led to the Sulsky et al. [51] material point 
approach, which is used in this study. 

One of the improved mesh-less methods is the MPM, which is regarded as an extension of 
Harlow’s [24] particle-in-cell (PIC) method for fluid mechanics modeling. However, PIC has an 
energy dissipation problem, which affects the method’s accuracy. Brackbill and Ruppel [8] 
established the fluid implicit particle method (FLIP), which was developed initially for fluid 
simulation. Sulsky et al. [51, 52] later provided a modification of this method for use in solid 
mechanics formulation. Sulsky and Schreyer [50] then named this modification the material 
point method. 

As shown in Figure 2.1, the MPM concept is based on two field descriptions: the Lagrangian 
description and the Eulerian grid. In the MPM, a continuum body is discretized into multiple 
numbers of particles named points. These are known as Lagrangian material particles. The 
Lagrangian description of particles implies that they are ingrained in and deformed by the 

material. Position, mass, density, volume, deformation gradient, and Cauchy stress tensor are all 
attributes of each particle. Throughout the process, the particle’s mass remains constant, but the 

material’s deformation causes its volume to change. Throughout the deformation procedure, 
these particles are evaluated. The continuum body’s background mesh/grid allows it to deform in 

the same grid that describes Sulsky’s updated Lagrangian scheme, where the equation of 
momentum is also solved. However, the continuum body only fills the background grids/mesh in 
the reference configuration in the total Lagrangian material point method (TLMPM) developed 

by de Vaucorbeli et al. [9].  

Figure 2.1 The Lagrangian description (top) and Eulerian grid (bottom) [17] 
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The MPM algorithm was first developed to examine some simple solid mechanics problems [51]. 
As a result, various MPM algorithms have been developed to explicitly solve such problems, 
providing more effective processes than implicit ones. The updated Lagrangian MPM approach 
considers the explicit solutions to be the simplest form. However, with the same straightforward 
modification, the TLMPM can be created from the updated Lagrangian MPM. The first step in the 
MPM general algorithm is to transfer (map) the particle information to the grid, as shown in Figure 
2.2. The nodes are then used to solve the momentum balance equation. 

 

  

Figure 2.2 Material point method general computational steps [17] 

All the particles’ information and variables, including their positions, volumes, densities, 
stresses, and other qualities, are updated from the node to the particles. The grid eventually 
reconstructs to its original state. This final reconstruction prevents distortion from occurring, 
allowing the MPM to be a suitable approach for large deformation problems such as slope 
failure. 

Few algorithms have been developed since the MPM’s introduction; the standard material point 
algorithm developed by Sulsky et al. [51] is the updated stress last (USL). This method does, 
however, produce a numerical problem related to the mass of the small particles. To avoid the 
small mass issue, Sulsky et al. [52] extended the formulation to the modified updated stress last 
(MUSL), where the updated particles’ velocity is mapped back to the nodes. De Vaucorbeli et al. 
[16] also developed the TLMPM formulation to track nonlinear behavior under large load 
impact. 

The MPM has a few advantages that make it a good choice for modeling such problems. One of 
the advantages is the loss of mesh, as the particles carry the analyzed information. Furthermore, 
because Eulerian mesh/grids cover the entire deformable domain, they allow for direct and 
efficient treatment of multi-body frictional contacts. While MPM has a simpler computer 
implementation than other meshless methods, it also produces high-quality images and 
simulations. Due to the similarity of the finite element method (FEM) and MPM, the influence of 
wide FEM studies supports the MPM to be considered. 
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3. APPLICATIONS 

This section contains several representative applications considered using the MPM. This 
particle-based approach is known for handling large deformation problems in solid mechanics. 
However, MPM has not been widely used for studying the static response of solid structures 
because it excels at modeling complex interactions, which are common in geotechnical and fluid 
engineering fields. Recently, de Vaucorbeli et al. [17] noted a lack of MPM studies on structural 
elements like beams and shells, highlighting a significant gap in the research. 

This study aims to fill this gap by examining the static response of cantilever beams using MPM. 
The focus is on how particles behave under different conditions, including changes in geometry 
and material properties such as the modulus of elasticity and Poisson’s ratio. The results from 
MPM will be compared with analytical solutions from linear elasticity theory, particularly those 
developed by Timoshenko and Goodier [67]. 

The research will explore how different loading conditions and beam shapes affect the accuracy 
of MPM compared with traditional methods. It will also look at how the number of material 
points used in the model impacts the results. By tracking the behavior of the beam at various 
points, the study aims to provide a clear understanding of how well MPM can predict static 
deformations. 

Ultimately, this research seeks to demonstrate that MPM is a valuable tool for analyzing large 
deformations in structural elements. By validating MPM against well-known analytical solutions, 
the study will show its potential for broader applications in structural mechanics, paving the way 
for future research into more complex deformation problems. 

In the realm of material mechanics, the behavior of two-elastic materials presents a critical 
research domain. While the MPM has proven its prowess in addressing large deformation 
challenges, there exists a notable gap in the exploration of how MPM can be applied to 
comprehensively understand the behavior of materials with dual elasticity. This research seeks to 
fill this void by undertaking a systematic investigation into the dynamic response, deformation 
patterns, and failure mechanisms of structures composed of two-elastic materials. 

The primary objectives include formulating a sophisticated two-dimensional MPM model within 
the MATLAB environment, tailored explicitly to capture the nuanced intricacies of bars 
constructed from two-elastic materials. The precision in defining parameters, such as the 
Eulerian grid size and the optimal particle distribution across the undeformed domain, is 
paramount to ensure accurate simulations. The research further delves into understanding the 
influence of diverse material constants and varying particle numbers on the behavior of two-
elastic materials, unraveling the model’s sensitivity to a spectrum of parameters. The eventual 
establishment of a comprehensive material point model dedicated to the impact of two-elastic 
materials is poised to contribute valuable insights to the broader context of material mechanics. 

The simulation of slope failure in dams emerges as a crucial facet in the domain of geotechnical 
engineering. While meshless methods offer conceptual advantages in capturing large 
deformation problems, their susceptibility to instability and numerical fracture poses challenges 
in accurately modeling scenarios like slope failures. This research embarks on the development 
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of a specialized two-dimensional material point model in MATLAB, meticulously crafted for 
simulating the intricate dynamics of slope failure in dams. 

The definition of the Eulerian grid size, coupled with the determination of an optimal number of 
particles, becomes a focal point to ensure the faithfulness of the model’s representation of the 
physical system. An exploration into the influence exerted by varying material point numbers 
and particle distributions on the slope failure domain aims to provide nuanced insights into the 
robustness of the model. The research further extends to systematically track the impact of 
deformation stemming from different geometries and boundary conditions, offering a 
comprehensive understanding of slope behavior under diverse scenarios. 

The emulation of dam collapses stands as a critical area of study within structural engineering. 
The TLMPM, known for its efficiency in handling very large deformations, becomes a central 
component in addressing the intricacies associated with the unique characteristics of dam 
structures. This research endeavors to formulate a rigorous two-dimensional TLMPM, explicitly 
designed to capture the complex dynamics and failure modes intrinsic to dam collapse. 

The precision in defining stress and strains in the reference configuration, coupled with the 
utilization of nonlinear constitutive equations, forms the backbone of TLMPM’s effectiveness in 
tracking large deformations. Its resistance to cell-crossing errors and numerical fractures 
positions TLMPM as an efficient formulation for studying structural behavior. The research 
methodology aims to study the structure’s behavior using TLMPM under various load and 
geometry assumptions. This comprehensive exploration aspires to contribute valuable insights to 
the scholarly understanding of dam collapses and advance the application of computational 
mechanics in addressing critical challenges in structural engineering. 

In the MUSL algorithm, Sulsky et al. [59] proposed a solution to address the issue associated 
with small masses. 

Meshless methods present viable concepts for the simulation of large deformation problems in 
solid mechanics, offering advantages over mesh-based counterparts. However, it is noteworthy 
that meshless methods are prone to instability issues and numerical fracture, rendering them less 
accurate for the analysis of engineering scenarios involving phenomena like machining, wear, 
and impacts, where damage and fracture mechanisms are prevalent [9]. 

The total Lagrangian particle-based methods demonstrate resistance to numerical fracture, 
attributed to the stability maintained by the background grids in the reference configuration 
throughout the analysis. Leveraging this stability, the TLMPM was introduced by Steffen et al. 
[55], initially for the convergence study of the standard MPM. Subsequently, Zhu et al. [65] 
employed TLMPM for graphic simulation purposes. 

In the scholarly continuum of structural mechanics research, seminal contributions from 
Timoshenko and Goodier; Lekhintskii, Pagano, Gere, and Timoshenko; and others have laid the 
foundational groundwork for our comprehension of linear elastic material theory. Subsequent 
investigations, building upon this formidable edifice, have probed more intricately into the 
discipline, directing their focus toward two pivotal dimensions: large deformation and elastic 
deformation. 
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The important work by Chucheepsahul, Bunacharoen, and Huang [68] develops as a noteworthy 
exploration into the intricacies of large deformation. This meticulous study, which centered on 
beams experiencing pronounced deformations, not only underscores the imperative of integrating 
large deformation paradigms into analytical frameworks but also yields exact solutions. Of 
particular note is the confluence of these outcomes with finite element analysis and linear theory, 
explaining the fundamental role of large deformation considerations for precision in elasticity 
solutions. 

Ma et al.’s research [69] significantly expands the understanding of large deformation by 
understanding the Timoshenko beam theory of dynamic response analysis. The nuanced 
definition of limitations within classical models, when confronted with the challenge of 
capturing natural frequencies under large deformations, represents a pivotal contribution. 
Furthermore, their judicious consideration of Poisson ratio impact and size effects highlights the 
intricate interplay between material properties and large deformation behavior. 

Andersen and Andersen’s scholarly contribution [70], marked by a comparative analysis of the 
MPM against elasticity solutions, is exemplary in this academic pursuit. Their comprehensive 
investigation crossed a spectrum of linear elastic problems, meticulously delineating MPM’s 
efficiency in modeling elastic deformations within the continuum mechanics framework. The 
discernible reduction in error with escalating order of interpolation underscores the method’s 
acumen in handling the complexities inherent in elastic deformation scenarios. A representative 
example is shown in Figure 3.1, where a 6-meter cantilever beam is studied under large 
deformation. 

Figure 3.1 Cantilever beam simulations under large deformation using TLMPM 
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Hydrocodes are typically used to examine certain physical phenomena brought on by impact and 
penetration, such as non-linear wave propagation, friction and abrasion, significant deformation, 
dynamic damage, and fracture [30]. Anderson [2] and Benson [5] have examined the wide 
variety of hydrocodes that are currently available. Traditionally, Lagrangian and Eulerian 
methods have been used to construct hydrocodes for impact and penetration simulations. The 
analysis of material interfaces and free interfaces is problematic for Eulerian approaches. In 
order to model the impact and penetration issues, a sibling boundary layer interface algorithm 
(BLINT) for sliding interfaces was included in the Eulerian CTH hydrocode [45, 48]. 

In the field of solid mechanics, Lagrangian [10, 11] and arbitrary Lagrangian-Eulerian methods 
[38] have been widely used to simulate penetration. The penetration has been simulated using the 
Lagrangian finite element method (FEM) based on rate-dependent plasticity, explicit 
contact/friction algorithm, and adaptive meshing [11]. Despite having the ability to trace material 
interfaces, Lagrangian codes can cause mesh distortion and entanglement while simulating 
penetration. In order to model penetration, Lagrangian codes frequently include a non-physical 
element erosion method. Recent meshless approaches, such as smoothed particle hydrodynamics 
(SPH) [32], meshless local Petrov-Galerkin method [23], and MPM [51, 52], have been used to 
handle problems involving impact and penetration. 

The MPM, developed by Sulsky et al. [51, 52], is a solid mechanics application of the particle-
in-cell approach [9, 25]. It discretizes a material domain using a set of material points since it is a 
completely Lagrangian particle approach. The grid distortion and entanglement are entirely 
avoided by solving the momentum equations on a predetermined uniform backdrop grid. The 
upsetting process [49], Taylor bar impact [50], dynamics crack [22, 53], explosive process [21, 
28], hypervelocity impact [40, 61], and dynamic analysis of saturated porous media [60] are only 
a few of the challenging engineering issues that MPM has been used to solve. Even though MPM 
has been used to overcome hypervelocity issues, simulating penetration issues with MPM is still 
a challenging process. 

The conventional MPM algorithm prevents material particle interpenetration by applying single-
valued mapping functions between background grid nodes and particles. The common MPM 
includes a no-slip contact condition by default. A typical MPM simulation was run by Sulsky et 
al. [52] for a steel sphere striking an aluminum target at 1,160 m/s. They discovered that the 
usual MPM’s calculation of penetration depth is significantly off from the outcome of the 
experiment. Therefore, an effective contact algorithm for releasing no-slip contact should be 
created. In some cases, involving impact and penetration, the inherent no-slip contact condition 
in the typical MPM may result in larger penetration resistance. 

York et al. [59] suggested a straightforward contact algorithm to enable the removal of the no-
slip contact requirement in the conventional MPM. In York’s method, the impenetrability 
criterion is imposed using the normal MPM method if the bodies are in contact with one another. 
The bodies move in their velocity fields to allow separation if they are traveling apart from one 
another. Hu and Chen [27] introduced a contact/sliding/separation algorithm in the multi-mesh 
environment to prevent interpenetration and permit separation in the gear contact process. The 
normal velocity of each material particle at the contact surface is determined by their contact 
algorithm using the shared background grid; however, the tangential velocity is determined using 
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the corresponding individual grid. Although the contact algorithms outlined above are effective 
at separating contact bodies, friction is not considered. 

In multi-velocity fields, a contact/friction/separation strategy was presented by Bardenhagen et 
al. [4, 20]. When contact occurs, MPM incorporates the impenetrability requirement and the 
Coulomb friction between bodies. The relative nodal velocity at the contact surface is used to 
calculate the contact force between two entities. The method has been proven using the granular 
shearing simulation and the sphere rolling on an inclined plane [20]. A recent three-dimensional 
multi-mesh contact algorithm for MPM was proposed by Pan et al. [58]. In this contact 
algorithm, the normal nodal acceleration continuity requirement at the contact surface is used to 
calculate the contact force between the bodies. 

The backdrop grid is used in MPM to apply the contact conditions, and the nodal variables can 
fully characterize the contact issues. A general formulation of the contact-impact problem is 
offered in this study. In the technique, the impenetrability condition is only placed on the 
deformed grid after each time step, as opposed to being imposed on both the deformed grid and 
the redefined regular grid at the start of the subsequent time step. The contact approach is used to 
simulate the penetration of two elastic balls using a particle failure model. 

This section outlines the contact resolution algorithm proposed by Bardenhagen et al. [4] 
designed specifically for deformable bodies. To streamline the discussion, we initially address 
contact scenarios involving both deformable bodies and rigid bodies, with subsequent 
consideration for self-contact as an added layer of complexity. Conceptually, the contact 
algorithm functions as a predictor-corrector scheme. Initially, nodal velocities are predicted 
independently for each body, treating them as if no contact has occurred. Subsequently, these 
predicted velocities undergo correction using a contact model. Note that the contact algorithm is 
selectively applicable to contact nodes, defined as those nodes receiving contributions from 
particles belonging to more than one body, as illustrated in Figure 3.2. For simplicity, our focus 
remains on contacts between distinct bodies, while self-contact requires specialized treatment, as 
detailed in Homel and Herbold. [6464] 

For each body indexed as 𝑘𝑘 = 1, 2, …𝑛𝑛, where 𝑛𝑛 denotes the total number of bodies, the standard 
MPM problem is systematically addressed.  

𝑚𝑚𝐼𝐼
𝑡𝑡,(𝑘𝑘) = ∑ 𝜑𝜑𝐼𝐼𝐼𝐼𝑚𝑚𝑝𝑝

𝑛𝑛𝑝𝑝𝑘𝑘

𝑝𝑝=1 , 𝑣𝑣𝐼𝐼
𝑡𝑡,(𝑘𝑘) = 1

𝑚𝑚𝐼𝐼
𝑡𝑡,(𝑘𝑘) ∑ 𝜑𝜑𝐼𝐼𝐼𝐼𝑚𝑚𝑝𝑝𝑣𝑣𝑝𝑝

𝑛𝑛𝑝𝑝𝑘𝑘

𝑝𝑝=1 , 𝑎𝑎𝐼𝐼
𝑡𝑡,(𝑘𝑘) = 𝑓𝑓𝐼𝐼

(𝑘𝑘)

𝑚𝑚𝐼𝐼
𝑡𝑡,(𝑘𝑘)  5.2.1 

𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) = 𝑣𝑣𝐼𝐼

𝑡𝑡,(𝑘𝑘) + ∆𝑡𝑡𝑎𝑎𝐼𝐼
𝑡𝑡,(𝑘𝑘) 5.2.2 

Where, 𝑛𝑛𝑝𝑝𝑘𝑘 signifies the count of particles constituting body 𝑘𝑘. It is imperative to highlight that 
the velocity field represented by a tilde is provisional and necessitates correction specifically for 
contact nodes. The corrected velocity, denoted as 𝑣𝑣𝐼𝐼

𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) (without a tilde), subsequently 
becomes the foundation for updating particles’ stress, position, and velocity, adhering to rigorous 
engineering principles. 
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Body 2

Contact nodes I

Figure 3.2 Two bodies make contact; nodes in contact or overlapping (represented by black 
solid squares) are defined as those that receive contributions from particles of both 
bodies. 

Following the computation of 𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘), the subsequent step involves detecting, particularly at 

contact nodes, whether two bodies are approaching or departing from each other. For simplicity, 
the subsequent presentation focuses on the interaction between two bodies, although the 
algorithm itself is versatile and can be extended to accommodate multiple bodies. Bardenhagen 
et al. [4] introduced a linear algorithm, denoted as  

�𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) − 𝑣𝑣𝐼𝐼𝑐𝑐𝑐𝑐� ∙ 𝑛𝑛𝐼𝐼

(𝑘𝑘) = �≥ 0
< 0   𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 5.2.3 

applicable to the number of bodies involved. This algorithm utilizes 𝑣𝑣𝐼𝐼𝑐𝑐𝑐𝑐, known as the center of 
mass velocity field, derived as  

𝑣𝑣𝐼𝐼𝑐𝑐𝑐𝑐 = (𝑚𝑚𝐼𝐼𝑣𝑣�𝐼𝐼)𝑡𝑡+∆𝑡𝑡,(1)+(𝑚𝑚𝐼𝐼𝑣𝑣�𝐼𝐼)𝑡𝑡+∆𝑡𝑡,(2)

𝑚𝑚𝐼𝐼
𝑡𝑡,(1)+𝑚𝑚𝐼𝐼

𝑡𝑡,(2) 5.2.4 

from the combined contributions of particles from the two bodies. This resultant velocity is 
referred to as the system velocity field. The algorithm’s efficacy lies in its departure from 
considering pairwise interactions of bodies, opting instead for a common frame defined by global 
quantities. This allows for simultaneous contact resolution across all bodies. 

If equation (5.2.3) determines that the two bodies are approaching, a correction to the velocities 
𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) is necessary to obtain the final velocity 𝑣𝑣𝐼𝐼

𝑡𝑡+∆𝑡𝑡,(𝑘𝑘). Otherwise, the velocities remain 
unaltered. The method for correcting grid velocities is contingent upon the specific contact 
model, with detailed discussions provided in earlier discussions for nonslip contact. 
Subsequently, particle velocities, positions, and stresses undergo updates following the equations 
presented below: 

𝑎𝑎𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) =

𝑣𝑣𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) − 𝑣𝑣𝐼𝐼

𝑡𝑡,(𝑘𝑘)

∆𝑡𝑡
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𝑥𝑥𝑝𝑝
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) = 𝑥𝑥𝑝𝑝

𝑡𝑡,(𝑘𝑘) + ∆𝑡𝑡�𝜑𝜑𝐼𝐼�𝑥𝑥𝑝𝑝𝑡𝑡�𝑣𝑣𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘)

𝑛𝑛𝑝𝑝𝑘𝑘

𝑝𝑝=1

 

𝑛𝑛𝑘𝑘𝑝𝑝

𝑣𝑣𝑡𝑡+∆𝑡𝑡,(𝑘𝑘)
𝐼𝐼 = 𝑣𝑣𝑡𝑡,(𝑘𝑘)

𝐼𝐼 + ∆𝑡𝑡�𝜑𝜑 𝑥𝑥𝑡𝑡𝐼𝐼�𝑎𝑎
𝑡𝑡,(𝑘𝑘)

𝐼𝐼� 𝐼𝐼  
𝐼𝐼=1

 

 

5.2.5 

The first equation in the set calculates corrected accelerations, specifically required for contact 
nodes. Notably, stress updates are omitted as they adhere to standard procedures. The discussion 
presented aligns with the update stress last (USL) formulation. 

The algorithm employed for contact-release at a given contact node I is straightforward. When 
contact is established, the nodal velocity undergoes correction to align the normal component of 
the body velocity with the normal component of the center-of-mass velocity. In the absence of 
friction between the bodies, this adjustment represented mathematically as  

𝑣𝑣𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) = �

𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) − ��𝑣𝑣�𝐼𝐼

𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) − 𝑣𝑣𝐼𝐼𝑐𝑐𝑐𝑐� ∙ 𝑛𝑛𝐼𝐼
(𝑘𝑘)� 𝑛𝑛𝐼𝐼

(𝑘𝑘), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘)                                                            , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

   5.2.6 

in equation (5.2.6) suffices for effective contact treatment. Notably, the tangential component of 
the body velocity remains unconstrained. 

The assertion that the normal component of the body velocity equates to the normal component of 
the center-of-mass velocity can be formally demonstrated as: 

𝑣𝑣𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) ∙ 𝑛𝑛𝐼𝐼

(𝑘𝑘) = 𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) ∙ 𝑛𝑛𝐼𝐼

(𝑘𝑘) − ���𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) − 𝑣𝑣𝐼𝐼𝑐𝑐𝑐𝑐� ∙ 𝑛𝑛𝐼𝐼

(𝑘𝑘)� 𝑛𝑛𝐼𝐼
(𝑘𝑘)� ∙ 𝑛𝑛𝐼𝐼

(𝑘𝑘)   

= 𝑣𝑣�𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) ∙ 𝑛𝑛(𝑘𝑘) − �𝑣𝑣�𝑡𝑡+∆𝑡𝑡,(𝑘𝑘)
𝐼𝐼 𝐼𝐼 𝐼𝐼 − 𝑣𝑣𝑐𝑐𝑚𝑚𝐼𝐼 � ∙ 𝑛𝑛(𝑘𝑘)

𝐼𝐼

= 𝑣𝑣�𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) ∙ 𝑛𝑛(𝑘𝑘) − 𝑣𝑣�𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) (
𝐼𝐼 𝐼𝐼 𝐼𝐼 ∙ 𝑛𝑛 𝑘𝑘)

𝐼𝐼 + 𝑣𝑣𝑐𝑐𝑚𝑚𝐼𝐼 ∙ 𝑛𝑛(𝑘𝑘)
𝐼𝐼 = 𝑣𝑣𝑐𝑐𝑚𝑚𝐼𝐼 ∙ 𝑛𝑛(𝑘𝑘)

𝐼𝐼  

     5.2.7 

Similarly, the confirmation that the tangential component of the corrected velocity is identical to 
the tangential component before correction can be proven as: 

𝑣𝑣𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) − �𝑣𝑣𝐼𝐼

𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) ∙ 𝑛𝑛𝐼𝐼
(𝑘𝑘)� 𝑛𝑛𝐼𝐼

(𝑘𝑘)

= 𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) − ��𝑣𝑣�𝐼𝐼

𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) − 𝑣𝑣𝐼𝐼𝑐𝑐𝑐𝑐� ∙ 𝑛𝑛𝐼𝐼
(𝑘𝑘)� ∙ 𝑛𝑛𝐼𝐼

(𝑘𝑘) − �𝑣𝑣𝐼𝐼𝑐𝑐𝑐𝑐 ∙ 𝑛𝑛𝐼𝐼
(𝑘𝑘)�𝑛𝑛𝐼𝐼

(𝑘𝑘)

= 𝑣𝑣�𝐼𝐼
𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) − �𝑣𝑣�𝐼𝐼

𝑡𝑡+∆𝑡𝑡,(𝑘𝑘) ∙ 𝑛𝑛𝐼𝐼
(𝑘𝑘)� 𝑛𝑛𝐼𝐼

(𝑘𝑘) 

     5.2.8 
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The determination of normal vectors 𝑛𝑛𝐼𝐼
(𝑘𝑘) at grid nodes for each body constitutes a pivotal step in 

completing the contact algorithm, as it significantly influences the accuracy of the results. The 
conventional approach involves isolating each body in relation to system velocities to derive the 
normal vectors. This entails computing the normal from the mass gradient of the material in 
consideration. For each entity, the particle mass undergoes interpolation to the element centers, 
denoted as 𝑥𝑥𝑐𝑐 , and is then divided by the element volume 𝑉𝑉𝑒𝑒 to yield a density 𝜌𝜌𝑐𝑐. The gradient 
of 𝜌𝜌𝑐𝑐, evaluated at the grid nodes, provides the normal direction at the surface of each body 
(Bardenhagen et al., [4]; Sulsky & Brackbill, [63, 64]). 

The cell-centered density, defined as 

𝜌𝜌𝑐𝑐 = 1
𝑉𝑉𝑒𝑒 
∑ 𝑚𝑚𝑝𝑝𝑆𝑆2�𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑐𝑐�
𝑛𝑛𝑝𝑝
𝑝𝑝=1 5.2.9 

incorporates bi-quadratic B-spline functions denoted as 𝑆𝑆2. In two dimensions, these functions 
are expressed as 𝑆𝑆2 = 𝑆𝑆𝑥𝑥(𝑥𝑥)𝑆𝑆𝑦𝑦(𝑦𝑦), with the one-dimensional quadratic B-spline function given 
by  

𝑆𝑆𝑥𝑥(𝑥𝑥) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

1
2ℎ𝑥𝑥2

𝑥𝑥2 +
3

2ℎ𝑥𝑥
𝑥𝑥 +

9
8

, −
3

2ℎ𝑥𝑥
≤ 𝑥𝑥 ≤

1
2ℎ𝑥𝑥

 −
1
ℎ𝑥𝑥2
𝑥𝑥2 +

3
4

,                       −
1

2ℎ𝑥𝑥
≤ 𝑥𝑥 ≤

1
2ℎ𝑥𝑥

1
2ℎ𝑥𝑥2

𝑥𝑥2 +
3

2ℎ𝑥𝑥
𝑥𝑥 +

9
8

,
1

2ℎ𝑥𝑥
≤ 𝑥𝑥 ≤

3
2ℎ𝑥𝑥

0,                                            𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

 5.2.10 

where ℎ𝑥𝑥 signifies the cell spacing in the 𝑥𝑥 direction. B-splines on a one-dimensional mesh 
(Figure 3.3) typically generate particles that contribute mass and momentum to multiple 
approximating functions. In 2D, each particle contributes to nine cells (the center block of a 3 x 3 
mesh and its neighbors), and in 3D this extends to 27 cells. 

The grid normal vector is subsequently expressed as 

𝑛𝑛𝐼𝐼 = ∑ 𝛻𝛻𝜑𝜑𝐼𝐼(𝑥𝑥𝑐𝑐)𝜌𝜌𝑐𝑐 , 𝑛𝑛𝐼𝐼
𝑛𝑛𝐼𝐼
‖𝑛𝑛𝐼𝐼‖𝑐𝑐  5.2.11 

 where 𝛻𝛻𝜑𝜑𝐼𝐼 represents the gradient of the MPM weighting functions. Note that the summation is 
performed on cells that include the node under consideration in their connectivity, as depicted in 
Figure 3.4. This method of computing normals is similar to SPH (Randles & Libersky, [62]). 
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Figure 3.3 The quadratic B-spline functions utilized to define cell center density 

Figure 3.4 The calculation of grid normal utilizing Equation (5.1.11) 

The foundational explicit TLMPM algorithm seamlessly incorporates the previously introduced 
contact algorithm into the conventional MPM. MPM methods for smooth contact scenarios 
requires a straightforward adjustment to contact force generation to accommodate Coulomb 
friction. While the illustration employs the update stress first (USF) approach, adapting it for the 
USL method is a manageable task. An integral modification to the standard MPM code involves 
enriching each grid node with information related to body velocity, mass, and the system’s 
overall mass and velocity. 

Figure 3.5 illustrates a representative explicit TLMPM computational cycle beginning with the 
mapping of particle information onto the grid (P2G). Subsequently, discrete equations of 
momentum are addressed on the grid nodes through the process of grid updating. Following this, 
particle attributes, including position, velocity, volume, density, deformation gradient, stresses, 
and other pertinent internal variables, undergo updates (G2P). Unlike the updated Lagrangian 
material point method (ULMPM) algorithm, TLMPM performs all mapping and interpolations in 
the undeformed reference configuration, considered as the initial state. A comprehensive 
flowchart of the explicit TLMPM, utilizing the modified update stress last (MUSL) formulation 



proposed by Sulsky et al. [51], is encapsulated in Algorithm 1. The TLMPM’s flowchart is 
similar to that of the ULMPM, with the notable distinction that the first Piola–Kirchhoff stress 
tensor is employed in the internal force vector, and spatial derivatives are taken with respect to 
the reference configuration, as opposed to the current (deformed) one. It is noteworthy that, for 
augmented robustness, the proposed modifications adhere to certain principles. 

Figure 3.5 Difference between ULMPM and TLMPM 

Example: Particle Contact 

Preliminary results of this investigation into the collision between two elastic balls utilizing the 
implicit dynamic method offer a comprehensive understanding of the complexities involved in 
such dynamic simulations, shedding light on various critical aspects of the process. The initial 
examination focuses on the collision of two elastic bodies, a fundamental problem first 
introduced by Sulsky et al. [51]. This problem serves as a litmus test for the implementation of a 
2D MPM code, offering a straightforward yet insightful scenario to validate the computational 
framework. 

It is essential to choose the right element type for dynamic analyses in order to guarantee their 
accuracy and stability. Low-order components, specifically 4-node quadrilateral elements, are 
used in this study because high-order elements run the risk of producing negative terms in the 
mass matrix. The robustness and dependability of the numerical simulations are ensured by this 
thorough selection. Furthermore, it is found that for dynamic analysis, four material points per 
element are adequate to preserve accuracy. This conclusion is important because it removes the 
need to incorporate extra “soft stiffness,” simplifying the computational model while maintaining 
the accuracy of the findings. 

As shown in Figure 3.6, core simulation contains two elastic balls, each with a radius of 0.2 
aspect ratio thickness/width, functioning under plane strain conditions. These balls are first 
placed at opposing corners of a square background mesh made up of 100 x 100 equal-sized 
square components (elements resulting in a total of 1,624 particles). 

Particle p Node I 
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Figure 3.6 Impact of two elastic bodies: problem statement. The computational domain is a unit 

square, and the radius of the disks is 0.2 mm. Any set of consistent units is sufficient. 

The initial velocities assigned to the balls, specifically (1.0 m/s, 1.0 m/s) and (-1.0 m/s, -1.0 m/s), 
cause them to move toward each other along the diagonal of the square. The material parameters 
under consideration include Young’s modulus of 1,000 kPa, a Poisson’s ratio of 0.3, and a 
density of 1.0 kg/m3. The simulation is systematically run up to a final time of t = 1.3 seconds. 
Figure 3.7 shows the movement of two balls in an extra illustrative scenario. Although no 
explicit contact law has been stated, the collision of the balls occurs in a physically realistic 
manner. 

The mean stress distribution within the balls is rigorously tracked and observed during the 
collision process, as shown in Figure 3.7. Notably, no apparent stress magnitudes are recorded 
prior to the hit when the balls are in continual motion due to given velocities. Given the constant 
velocities of the material points within the balls, the absence of tension in the first phase is 
expected. As the collision progresses, material sites in the contact region experience increased 
compressive stresses, as one would expect in such a circumstance. The visual representation of 
stress distribution provides useful information about the dynamic behavior of elastic balls during 
impact. 
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Figure 3.7 Impact of two elastic bodies: simulation snapshots. These images were created 
using MATLAB. 

Figure 3.8 Impact of two elastic bodies: evolution of kinetic, strain, and total energies 
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Following the hit, Figure 3.7 shows the state of the balls post-collision. The velocities of the 
balls have now changed direction in comparison with their pre-collision movement. While the 
majority of the stress effects have subsided, tiny residual strains can still be seen on the balls. 
These residual stresses are due to the free vibration of the balls after the contact, emphasizing the 
need to include post-collision behavior in the analysis.\ 

Aside from measuring stress distributions, energy conservation is critical in determining the 
quality and dependability of simulation results. The overall energy of the system, which includes 
kinetic and strain energy components, is meticulously monitored. The kinetic energy (𝐸𝐸𝑘𝑘) of 
each material point is defined by the product of its mass point (𝑚𝑚𝑝𝑝) and velocity (𝑣𝑣𝑝𝑝), whereas 
the strain energy (𝐸𝐸𝑆𝑆) accounts for the strain energy stored in the material points. The energy 
conservation errors are studied as a function of time, specifically for a time step size of ∆𝑡𝑡 = 
0.001 seconds, 

𝑛𝑛 𝑝𝑝

𝐸𝐸𝑆𝑆 =  �𝑢𝑢𝐼𝐼𝑉𝑉𝐼𝐼 
𝐼𝐼=1

𝑛𝑛𝑝𝑝
1

𝐸𝐸𝑘𝑘 =  �𝑣𝑣
2 𝐼𝐼 ∙ 𝑣𝑣𝐼𝐼𝑚𝑚𝐼𝐼 
𝐼𝐼=1

𝐸𝐸𝑇𝑇𝑐𝑐𝑡𝑡𝑐𝑐𝑟𝑟 =  𝐸𝐸𝑆𝑆  + 𝐸𝐸𝑘𝑘 

where 𝑢𝑢𝑝𝑝 denotes the strain energy density of particle 𝑝𝑝, 𝑢𝑢𝑝𝑝  =  1
2

 𝜎𝜎𝑝𝑝,𝑖𝑖𝑖𝑖𝜖𝜖𝑝𝑝,𝑖𝑖𝑖𝑖 

Figure 3.8 shows the evolution of kinetic, strain, and total energy during the simulation. At first, 
all the energy in the system is kinetic. Kinetic energy falls as the collision develops, particularly 
during the impact phase, and then begins to recover as the balls separate. Simultaneously, strain 
energy reaches its peak at the location of maximal deformation during impact and then falls to a 
level consistent with the ball’s free vibration. These findings are consistent with earlier research, 
verifying the simulation methodology’s application. 

When the time step size is set to ∆𝑡𝑡 = 0.001 seconds, the results demonstrate that the energy 
conservation errors are significant. This conclusion emphasizes the crucial importance of 
selecting an adequate time step size for proper collision dynamics resolution. It is especially 
important in the context of implicit integration methods, like the trapezoidal rule, which are 
known for their unconditional stability in linear analysis. However, in the current case, the need 
to precisely resolve the collision imposes a bound on the implicit time step size, which is referred 
to as the characteristic collision time. 

The characteristic collision time is the time necessary for a wave to transverse one of the balls, 
and it depends on the wave speed and the diameter of the ball. The wave speed in this case is 
roughly 10.0 m/s, and the diameter of the ball is around 0.4 meters. As a result, the characteristic 
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collision time is projected to be 0.04 seconds, or 16 times the specified time step size. This 
finding highlights the difficult balance that must be struck when selecting an appropriate time 
step size for accurate simulation while optimizing computational performance. 

Note that lowering the number of required time steps usually results in less processing time. 
However, because implicit and explicit integration approaches use fundamentally different 
solution schemes, establishing a straight one-to-one relationship between time step size and 
computing time reduction is difficult. Furthermore, as seen in this example, specific analysis 
characteristics such as wave speed and ball diameter have a considerable impact on potential 
reductions in the number of time steps necessary. 

To summarize, the preliminary results of this study provide important insights into the dynamic 
analysis of collisions between elastic balls and balls utilizing the implicit dynamic approach. The 
element type, time step size, and contact resolution technique all play important roles in 
determining simulation accuracy and stability. The visual representation of stress distribution and 
the study of energy conservation errors provide a thorough knowledge of the simulated systems’ 
behavior during collision. These findings pave the way for future investigation and refining of 
the study ideas, with a primary objective goal of improving knowledge of complicated solid 
mechanics problems and computational modeling methodologies. 

Example: Slope Failure 

Slope stability is a significant problem that geotechnical scholars have studied for many years. 
Analyzing slope stability is one of the many reasons to evaluate the analysis techniques that 
occur in the rule of mesh-based approaches that consider the effect of structure support and 
deformation limitations. In most cases, it is important to study the behavior of the slope beyond 
failure, which is unavoidable, and investigate the impact of slide masses on low-laying zones. 
The physical importance of slope failures can be evaluated in the form of landslides leading to a 
large flow of debris. Landslide-debris flow is an actual fast and massive flow-like movement of 
soil and fragmented rock. The impact of collapse and material mobility breakdown could cause 
significant damage to the residential and commercial structures that are in the flow-way. [7]. 

Numerous factors, including heavy rainfall, imposed loads, weathering-induced strength loss, 
and seismic excitation, can cause slope failures and landslides. Seismic excitation, also known as 
an earthquake, has been identified as the primary factor in slope failures [33]. As a result, 
analyzing a slope’s response to a seismic event becomes more essential. To address this problem, 
numerous strategies have been developed. According to [31], there are three phases to evaluating 
a slope’s performance during earthquakes: stress-deformation analysis, pseudo-static analysis, 
and permanent displacement analysis. When the pseudo-static analysis is used as a primary 
analysis method, only a limit equilibrium method representing the seismic shaking by a constant 
inertial force applied to a sliding mass can indicate safety against slope failure. Permanent 
displacement analysis is a significant improvement over pseudo-static analysis because it 
provides a more quantitative method for evaluating the performance of slopes during earthquakes 
[7]. 

The Newmark rigid-block analysis is a common illustration of the permanent displacement 
analysis [44]. In this method, the permanent displacement of a rigid block moving along an 
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inclined plane with a base acceleration is used to estimate the permanent slope deformation 
caused by earthquakes. The geometric and material models used in pseudo-static and permanent 
displacement analyses are extremely simplified. However, these methods cannot evaluate 
earthquake-induced slope deformations under complex geological conditions. For this reason, the 
stress-deformation investigation is utilized as it can represent complex soil behaviors (e.g., non-
straight reaction to dynamic stacking, strain relaxing, and strain rate reliance on material 
strength) and mathematical circumstances. 

It follows the approach of computing stresses in the material and its response in the form of 
deformations based on a defined constitutive relationship between stress and strain. A stress–
deformation analysis is frequently performed using numerical methods like the FEM or finite 
difference method (FDM). However, the mesh-based methods (e.g., FEM) have difficulty 
modeling large deformations due to mesh distortion and entanglement problems. As a result, 
stress-deformation analysis is currently limited to estimating relatively small seismically induced 
slope deformations [31]. The drawback of these methods to deal with large deformations, 
therefore, considerably impedes their application in the analysis of earthquake-induced slope 
deformations. 

Large deformation and failure evaluations have been a challenge for many scholars in simulating 
multi-phase interactions; therefore, the MPM has presented a powerful spatial assessment. In 
1990, Sulsky et al. developed, presented, and applied the first MPM to model and simulate solid 
materials. MPM opened scholars and researchers to acknowledge the potential of the new 
method to be used for many different applications like silo discharge and plastic molding [56, 
57]. Additionally, problems involving the effects of explosives or other large deformation [26, 
29], the geotechnical quasi-static analyses of slope stability [6, 54], modeling failure, [57] anchor 
pull-out [13], soil column collapse [1, 36], landslides and debris flow [47], and landslide-induced 
interactions with structures [42] can and have been explored using MPM strategies.  

The two major advantages of using MPM are the limitation of the time step and enabling 
improved algorithm accuracy. Addressing the time step size limitation ingrained in explicit 
integration schemes potentially saves major computational amounts for certain types of 
problems. Enabling an improved algorithm accuracy is important for various constitutive 
behaviors, like elastoplasticity [55]. 

MPM uses two discretizations. The continuum body with some of the material points carrying all 
the variables is the first discretization. The second, the background grid/mesh, is discretized to 
solve the equation of motion. To avoid the mesh deforming after the time step, the grid (a 
computational mesh) might be adjusted appropriately or might be maintained in its original 
position. This eliminates the weakness of the FEM, for which extreme grid/mesh deformation 
might appear due to large deformations. Like the finite element method, time integration 
schemes for MPM can use either explicit or implicit methodologies [55]. 

In the dynamic landscape of geotechnical engineering, the quest for precise simulation 
approaches has driven the development of the MPM. To establish a robust benchmark for the 
proposed MPM simulation approach, an extensive dynamic analysis of slope behavior is 
executed using MATLAB. The simulation unfolds over a seismic excitation period of 7.2 
seconds, with the soil intricately modeled using the Mohr-Coulomb failure criterion. This section 
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introduces the technical intricacies and also delves into the application of MPM in the complex 
realm of landslide mechanics. 

A critical decision surfaces regarding the choice of the domain-based TLMPM over alternatives 
like MUSL, justified by its superior performance in modeling torsional and stretching 
deformation modes. This choice is underscored by coupling TLMPM with an elastoplastic 
constitutive model based on non-associated Mohr-Coulomb plasticity as advocated by [65]. The 
study then transitions seamlessly into the analytical phase where the geometric features of the 
slump are meticulously analyzed. This involves a comparative study, comparing the results such 
as geometry and failure surface to the numerical simulation conducted by [66]. Huang et al.’s 
[66] approach is anchored in a Drucker–Prager model with tension cutoff (D-P), setting the stage 
for a nuanced evaluation. 

 

 

Figure 3.9 The configuration of the slump involves applying roller boundary conditions to the 
domain’s left and right sides, with a no-slip condition enforced at the material’s base. 

The geometry of the problem, vividly portrayed in Figure 3.9, lays the groundwork for 
subsequent discussion. Here, the soil material is dissected into 75 x 35 meter elements with four 
material points per element, amounting to 7,031 material points. A uniform mesh spacing of 1 m 
is meticulously employed, with the imposition of rollers at the left and right domain limits. 
Simultaneously, a nonslip condition is carefully enforced at the base of the material. The 
procedural fidelity to [66] numerical approach, with the absence of local damping in the equation 
of motion and the abrupt application of gravity at the simulation’s commencement, underscores 
the commitment to align with established methodologies. 

Material properties, a cornerstone of geotechnical simulations, come to the fore with a detailed 
exposition. The elastoplastic cohesive material, characterized by a density ρ = 2100 kg/m³, an 
elastic modulus E = 70 MPa, and a Poisson’s ratio ν = 0.3, encapsulates the complexity of the 
real-world scenario. Cohesion (c) is assigned a value of 10 Pa, and the internal friction angle (φ) 
stands at 20, with a conspicuous absence of dilatancy (δ = 0). The total simulation time is 
meticulously set at 7.2 seconds, and a time step multiplier α = 0.5 is carefully chosen.  

As the narrative unfolds, the process seamlessly transitions into a critical exploration of MPM’s 
intrinsic dissimilarity to FEM, illustrating the need for a bespoke simulation approach. Crucial 
revelation surfaces—prescribed velocities, a commonplace boundary condition in FEM, find no 
direct application in MPM simulations. This demarcation underscores the necessity for 
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methodological adaptations and establishes MPM as a novel paradigm in geotechnical 
applications, warranting a unique verification process. 

The orchestration of the slope failure problem necessitates a nuanced discussion on boundary 
conditions, a pivotal aspect in ensuring the fidelity of the simulation. Here, the introduction of 
rigid particles assumes a central role in playing the part of velocity carriers. Figure 3.9 provides a 
visual narrative, mapping out these rigid boundaries and their nuanced interplay within the 
simulation. This representation extends beyond a mere technicality, underlining the essence of 
these rigid boundary particles as fundamental components outlining the box around the slope. 

The soil’s complex behavior is encapsulated in the adoption of the Mohr-Coulomb constitutive 
law, where the interplay of forces is meticulously modeled. A seamless transition occurs between 
the theoretical constructs and the practical, as the smooth contact for side boundaries emerges as 
a pragmatic choice. This design accommodates the free settlement of soil along the vertical 
direction, mirroring real-world scenarios. Simultaneously, the imposition of rough contact for the 
bottom in the horizontal direction introduces an additional layer of realism, bridging the 
theoretical and the practical with finesse. 

The meticulous construction of the simulation framework, as outlined in previous sections, sets 
the stage for the unveiling of preliminary results. This phase ventures into the core of MPM’s 
capabilities, illustrating its efficacy in modeling soil slopes. Mesh and particle discretizations, as 
visually articulated in Figure 3.10, serve as the canvas upon which the dynamics of slope 
behavior are painted. At t = 7.2 s, the contours of shear strain and total displacement come to life, 
offering a glimpse into the evolving landscape. 

 
Figure 3.10 The MPM solution for the elastoplastic slump reveals the gradual development of a 

dynamic shear zone extending backward from the slope’s toe, culminating in a 
circular failure mode. 

Within the temporal constraints of t = 7.2 s, the deformation behavior of the slope, as predicted 
by MPM, aligns admirably with predictions from MATLAB and other continuum-based models. 
The prediction of an almost curved sliding surface resonates with the consensus within the 
geotechnical community. However, the imposition of a non-zero dilatancy angle of 45 degrees 
introduces a layer of complexity. While enhancing the prediction of the failure surface, it veers 
into the territory of over-predicting plastic volumetric expansion—a scenario akin to the soil 
undergoing heavy compaction—a contradiction to the initial state of the considered soil. This 
discrepancy manifests in the form of a substantial run-out distance in the numerical model. 

With intellectual integrity at the forefront, the study confronts these disparities with a forward-
looking lens. The acknowledgment of the inherent limitations leads to a contemplation of 
advanced constitutive models that intricately consider the effect of soil degradation with stress 
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and density evolutions. Positioned as potential refinements to the existing elastoplastic Mohr-
Coulomb model, these advanced models beckon the attention of researchers and practitioners 
alike. 

In principle, the implementation of these advanced models within the MPM framework is 
portrayed as a straightforward venture. However, the nuanced narrative introduces a note of 
caution: numerical stability problems stand as formidable challenges, and formulations are 
undergoing meticulous development. The saga continues with consideration of the soil’s reported 
approximate 10% water content, introducing the proposition of amalgamating advanced 
constitutive models with partially saturated soil models. This hybrid approach emerges as a 
beacon of promise, poised to enhance the simulation of progressive failure in the experimental 
setting. 

In Figure 3.10, the visual representation of the numerical solution to the elastoplastic problem 
illustrates the intricacies of slope behavior. An intense shear zone, as highlighted by the second 
invariant of the accumulated plastic strain, takes center stage at the toe of the slope. This zone 
burgeons as the material yields, propagating backward to the summit of the material, ultimately 
culminating in a rotational slump. The alignment of the failure surface with the [66] solution 
offers a semblance of validation. However, keen observations reveal disparities, notably a lower 
crest of the slope compared with the original work in [66]. 

The study navigates these distinctions with finesse, attributing the nuanced variations to the 
spurious material separation quandary inherent in TLMPM. The crest of the slope, subject to 
considerable stretching deformation modes, becomes a focal point of exploration. Despite these 
differences, the numerical results, resolved through vectorized and iterative solutions within 
approximately 7.2 seconds, resonate with the broader narrative reported by [66]. The intellectual 
integrity embedded in these observations opens avenues for future investigations, echoing the 
dynamic nature of geotechnical simulations. 

This study stands as a comprehensive exploration, not merely of numerical simulations but as a 
journey through the intricacies of MPM in the context of geotechnical applications. Each section, 
meticulously woven into the fabric of the narrative, contributes to the holistic understanding of 
the methodology, challenges, and promises that unfold in the realm of slope dynamics. 
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4. SUMMARY AND CONCLUSIONS  

Several material point methods have been developed and applied to problems associated with 
natural hazard modeling of transportation infrastructure. These include the large deformation of 
bridge-like structures, the impacts of particles as in rockfall or granular flows, or the gravity-
driven failure of geotechnical structures. Although these problems lack comparative solutions for 
direct quantitative calculations, all have physically reasonable outcomes that we hope to refine 
and improve upon in the future.  
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