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ABSTRACT 

This report investigates the application of low-cost sensing technologies, including GPS, accelerometers, 
and smartphones, to monitor roadway pavement conditions in real time. By leveraging widely available 
sensors embedded in vehicles, this research demonstrates how machine learning models can detect and 
classify road anomalies, such as cracks and potholes, significantly improving road safety and reducing 
operational costs. The study also presents a mixed integer linear programming (MILP) model to optimize 
maintenance and repair (M&R) activities under budget constraints. These models help transportation 
agencies prioritize road repairs, ensure efficient resource allocation, and minimize traffic disruptions. By 
adopting low-cost sensor-based approaches, municipalities can move toward more proactive, data-driven 
maintenance strategies, ultimately improving road network longevity and user satisfaction. 
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1. INTRODUCTION 

Road surface irregularities, such as cracks, joints, and potholes, have a significant impact on ride quality, 
safety, travel time, traffic conditions, and driving costs. The Intentional Roughness Index (IRI) is used as 
the primary quantifiable indicator of road surface condition. It calculates the total vertical displacement of 
vehicles passing over a road, divided by the traveled distance, and is expressed in units of meters per 
kilometer or inches per mile. Therefore, IRI quantifies the effect of road surface irregularities on the road 
profile, which affects driver safety and increases driving costs, including fuel consumption, repair and 
maintenance, depreciation, and tire costs. A lower IRI value indicates a flatter road surface profile, 
resulting in less disruption to traffic flow and improved travel time, cost, and safety for road users. 
Additionally, it reduces the maintenance and repair costs of the road surface. For instance, an IRI of 0 
inch/mile represents a perfectly flat profile. While there is no upper limit for IRI, in practice, IRI values 
above 500 inches/mile indicate pavements that are nearly impassable for vehicles except at reduced 
speeds (Park et al., 2007). It is estimated that a 64 inches/mile increase in IRI results in a 2.5% increase in 
fuel consumption and a 1% increase in tire wear, respectively. 

Several techniques can be used to inspect the roadways performance and identify issues, like cracks, 
potholes, and other forms of distress. These techniques include visual assessment by inspectors, the use of 
specialized vehicles equipped with laser devices and cameras to measure distress, and the involvement of 
citizens who report their observations. However, these techniques suffer from inefficiency, high labor 
requirements, and significant costs. For instance, it is estimated that on average, these inspection 
techniques cost $429 per mile (Croze & Zilay, 2014). More advanced techniques, such as image 
processing and video analysis, have also been evaluated (Sharma et al., 2020; Zakeri et al., 2017). 
However, these techniques heavily rely on the quality of images and videos, which limits their 
applicability to daylight and favorable weather conditions. Moreover, implementing these techniques 
necessitates significant data storage capacity, approximately 1.6 GB per mile, and the computational 
analysis of such large datasets is computationally demanding (Yan & Yuan, 2018). As a result, 
transportation authorities and municipalities are continuously seeking low-cost and efficient pavement 
evaluation technologies, along with a centralized information system that provides real-time road status 
updates (Jahanshahi et al., 2013). Furthermore, maintaining an up-to-date database of road surface 
conditions using the aforementioned techniques is highly challenging, if not impossible (Chang et al., 
2005; S.-E. Chen et al., 2011). Additionally, these techniques rely on multiple data collection devices, 
such as video/image recorders, GPS sensors, and motion sensors, all of which require calibration and 
synchronization. For instance, if the GPS signal is lost or the batteries of the video/image recorders are 
discharged, the data collected from other devices becomes useless. Finally, the widespread 
implementation of the discussed techniques is hindered by the requirement for technical expertise and the 
labor-intensive nature of the operations involved. 

In addition to inspecting and quantifying road surface quality, transportation agencies must utilize these 
metrics to strategically allocate funds to decelerate deterioration rates, maintain, and improve road surface 
conditions over time. The optimization of road surface repair and maintenance activities combined with 
thoughtful budget allocation is critical. However, agencies face challenges prioritizing maintenance 
activities across road networks under tight budgets. Optimization models facilitate planning and 
scheduling of maintenance activities to improve road surface conditions over time considering budgetary 
constraints. Studies demonstrate linear programming, integer programming, and multi-objective 
optimization efficiently allocate resources and mitigate deterioration (Chan et al., 2003; W. Chen & 
Zheng, 2021; de la Garza et al., 2011; Torres-Machi et al., 2017; Torres-Machí et al., 2014). These 
quantitative methods empower agencies to boost pavement condition and longevity network-wide while 
being fiscally responsible. 
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An efficient solution to address the limitations discussed above is to use low-cost widely accessible 
sensors, such as GPS, accelerometer, and cellphones, to automate inspection of roadway pavement 
conditions (Koch et al., 2015; Spencer Jr et al., 2019). There is a pressing need for innovative solutions to 
reduce operational costs and time, enhance data collection simplicity, facilitate maps of roadway 
pavement conditions, and maintain up-to-date conditions of existing transportation networks. Finally, 
there is a need for new optimization models that can prioritize and identify the optimal selection of 
maintenance and repair treatments for road networks while considering budgetary limits. These new 
models provide valuable insights into creating action plans that allocate sufficient funds to slow down the 
degradation of road conditions and strive for improving the existing road conditions. 
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2. RESEARCH BACKGROUND 

The present work focuses on two areas of ongoing research (1) road surface quality monitoring; and (2) 
road repair and maintenance planning, which are discussed in the following sections in more details. 

2.1 Road Surface Quality Monitoring 

In most developing countries, road networks are poorly maintained due to lack of funds and technology. 
Therefore, the road surface monitoring system and maintenance planning mostly rely on inexpensive 
solutions that can be used to monitor and report road conditions using the existing vehicles on roads.  

To this end, De Zoysa et al. proposed a sensor network of public transport system, BusNet, originally 
designed for monitoring environmental pollution. By equipping buses with various sensors and onboard 
GPS loggers, the system collected data of road networks. To transmit the collected data, buses visited 
substations where data was then transferred to a central server. By analyzing changes in acceleration and 
vehicle speed, BusNet successfully identified the locations of potholes (De Zoysa et al., 2007). However, 
a notable drawback of BusNet was its limited performance in traffic scenarios, as changes in acceleration 
could be caused not only by potholes but also by traffic congestion. In another study, Eriksson et al. 
developed Pathole Patrol (P2), a mobile sensing application deployed in taxis. The system utilized a range 
of sensors placed inside the taxi cabinet to record acceleration. By employing a predefined and manually 
labeled set of road conditions, the system accurately identified poor road surfaces. The experiment 
involved integrating specific hardware components, including an embedded computer, WIFI card, 
external GPS, and a 3-axis accelerometer. Evaluation of the system on thousands of kilometers of taxi 
drives in Boston demonstrated a successful detection rate of 90% for potholes (Eriksson et al., 2008). In 
another study, Tai et al. used smartphones accelerometer and GPS to collect motion-sensing data using a 
motorcycle with speed limited to a maximum of 40 km/h. Data were preprocessed by the device and sent 
to a centralized server for classification. Two classification procedures were performed — one to detect 
the road anomalies and the other to rate the road pavement quality from a predefined model of a smooth 
road. The motorcycle rider manually labeled the road conditions using a microphone. The developed 
system could achieve an accuracy of 78.5% in detecting different road surface conditions (Tai et al., 
2010). 

Several studies focused on developing road surface monitoring systems using standalone accelerometers 
and accelerometers that come with smartphones to detect speed bumps and anomalies. For example, Das 
et al. focused on the use of mobile devices for detection of road bumps called Platform for Remote 
Sensing using Smartphones (PRISM). The developed system used a three-axial accelerometer and GPS 
receiver to capture motion-related data when vehicles encountered road bumps. The recorded 
accelerometer data were locally processed in real time on the device to identify the location of the bumps 
before being transmitted to a central server. To ensure user privacy and prevent information misuse, they 
implemented a mechanism called “forced amnesia,” which involved periodically stopping and restarted 
the application. Results demonstrated a bump detection rate of approximately 70% without forced 
amnesia and about 45% with forced amnesia (Das et al., 2010). In another study, Bhoraskar et al. 
developed a road and traffic state monitoring system capable of recording braking events, collecting 
information on traffic congestion, and identifying speed bumps based on vertical acceleration peaks. 
Their approach utilized a K-means algorithm to classify road sections as either bumpy or smooth based on 
the standard deviation of vertical acceleration. Results indicated the standard deviation of vertical 
acceleration played a crucial role in accurately localizing speed bumps (Bhoraskar et al., 2012). Similarly, 
Mednis et al. and Strazdins et al. focused on utilizing Android smartphones with accelerometers to 
identify the location of potholes (Mednis et al., 2011; Strazdins et al., 2011). Their developed systems 
employed various algorithms to detect changes in acceleration vibrations and determine the presence of 
potholes. In another similar study, Sense developed a road anomly identification system using many 
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sensing devices from mobile phone such as accelerometer, microphone, GSM radio, and GPS (Sense, 
2008). 

Most of the studies discussed above focused on identifying the locations of anomalies to plan for their 
repairment and maintenance. However, several other studies focused on estimating the road surface or 
pavement condition in terms of roughness. Two popular methods to classify the road roughness are the 
International Roughness Index (Sayers, 1986) and the International Standards Organization (ISO) 
classification (Standardization et al., 1995). Road roughness is defined by American Society of Testing 
and Materials (ASTM) as: The deviations of a pavement surface from a true planar surface with 
characteristic dimensions that affect vehicle dynamics, ride quality, dynamic loads, and drainage, for 
example, longitudinal profile, transverse profile, and cross slope (ASTM International, 2012). Gonzalez et 
al. used an accelerometer to fit in a simulation car to assess road surface condition by measuring and 
quantifying road roughness according to ISO definition. Their simulations’ results showed the roughness 
of road can be estimated from acceleration data obtained from the sensor (González et al., 2008). In 
another study, Douangphachanh and Oneyama developed a system of road surface monitoring using 
smartphones motion-sensing sensors. The developed system was designed based on a simple algorithm 
that uses several if-conditions to detect changes in recorded accelerations due to potholes and speed 
bumps. Additionally, the developed model was designed to be capable of estimating the road roughness 
based on the International Roughness Index (IRI). Based on the results from testing their developed 
model, it was shown there is a strong linear relationship between the IRI and magnitude of acceleration 
vibrations (Douangphachanh & Oneyama, 2013). 

Although, most studies in the literature focused on the use of accelerometer sensing as the main indicator 
for road anomalies, it might not be a sufficient indicator, especially when there is a sudden stop or change 
in motion acceleration. To this end, several other studies focused on the use of other motion-sensing data, 
such as gyroscope around gravity rotation to improve the accuracy of pothole detection. For example, 
Mohamed et al. proposed a road condition monitoring framework that detects road anomalies, such as 
speed bumps, based on sensors built in Smartphones. In addition to the accelerometer, data from 
gyroscope around gravity rotation was utilized as a cross-validation method to confirm the detection 
results based on accelerometer data (Mohamed et al., 2015). In another similar study, Douangphachanh & 
Oneyama extended their previously road surface roughness analysis model using data from 
accelerometers and gyroscopes on smartphones. They identified there is a linear relationship between the 
road roughness and the magnitudes of vibration calculated from each axis of the accelerometers and 
gyroscopes. They demonstrated that the use of gyroscope data can significantly improve the accuracy of 
their previously models (Douangphachanh & Oneyama, 2014). 

Studies discussed above, used sensing technology devices mounted on vehicles to record and collect data 
such as acceleration, and gyroscope. However, vehicles are equipped with suspension and dampers to 
attenuate certain vibrations caused by road anomalies. When the vehicle drives slowly, the wheel 
revolutions per minute (RPM) is low, resulting in less vibration input from the road. Increasing the speed, 
the wheel RPM and the frequency of the road input also increases. Accordingly, several studies focused 
on developing models independent from vehicle speed. For example, Seraj et al. developed a road surface 
monitoring system, RoADS, that used smartphones sensors, including accelerometer and gyroscope. They 
used a method to reduce the effects of speed, slopes, and drifts from sensor signals. The developed system 
used an audiovisual data labeling where the labeler used microphone and camera of the phone to 
manually identify different types of road conditions, such as potholes, speed bumps, road and bridge 
joints, and railroad crossings. The system was developed based on wavelet decomposition analysis for 
signal processing of acceleration and gyroscope data, and Support Vector Machine (SVM) for anomaly 
detection and classification. The system could identify real-time road conditions at an accuracy of nearly 
90%, regardless of vehicle type, and road location (Seraj et al., 2015). In another similar study, Perttunen 
et al. proposed a method of linear regression to remove the linear dependency of the speed from the 
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feature vector. They used a Nokia N95 mounted on the windshield, with accelerometer sampling at 38Hz 
and GPS to collect the data. Their developed system classified different road surface anomalies into two 
classes: mild and severe. Although their developed system did not lead into a highly satisfactory 
accuracy, the obtained results showed that the use of methods to remove the reliance of detection models 
on vehicle speed improves the accuracy of the models (Perttunen et al., 2011). 

2.2 Road Repair and Maintenance Planning 

Accurately anticipating pavement maintenance and rehabilitation needs and efficiently allocating road 
maintenance funds is essential for ensuring the longevity and quality of road infrastructure. It enables 
proactive planning, timely repairs, and effective utilization of resources, ultimately contributing to safer 
and more reliable road networks (Lu, 2011). The objective is to maintain pavements in good condition 
rather than waiting for major pavement failures before initiating reconstruction (Miah et al., 2020). 
Making early investments to uphold the integrity of roads will yield long-term benefits. Each dollar spent 
on maintaining roads in fair condition will save approximately $4–$5 that would otherwise be required to 
rehabilitate or reconstruct a road that has severely deteriorated (Onyango et al., 2018). Abaza & Ashur 
developed a non-linear stochastic optimization model for the selection of an optimum maintenance and 
rehabilitation treatment, with the main objective of optimizing pavement condition under constrained 
budgets. The model used a discrete-time Markovian model with the objective of maximizing the 
proportion of roads in “good” condition (Abaza & Ashur, 1999). However, the optimization model used 
penalty functions to avoid infeasibility and an iterative solution technique that does not guarantee optimal 
treatment decisions. 

Optimization models, such as linear programming (LP) and mixed-integer linear programming (MILP), 
have become prevalent for pavement management decision-making. LP models optimize objectives and 
constraints represented as linear functions, while MILP includes integer decision variables. Sun et al. 
developed an LP model to minimize user costs and maximize pavement condition over a planning 
horizon. Although LP is efficient, it cannot provide project-specific solutions (Sun et al., 2020). To 
address this, Liu et al. formulated a MILP model that determined optimal M&R activities for individual 
pavement sections (Liu et al., 2022). However, computational complexity limited its network size. 
Building on this, Donev & Hoffmann proposed a MILP model using a rolling-horizon approach, reducing 
problem scale (Donev & Hoffmann, 2020). While minimizing costs, their model neglected network 
condition. Incorporating multiple objectives, Rahman et al. presented a MILP model to optimize agency 
costs, user costs, and condition (Rahman et al., 2017). But their case study was limited to a small 
network. To handle larger networks, Fani et al. designed a MILP model with clustering techniques that 
aggregated similar pavement sections (Fani et al., 2022). The technique improved scalability of MILP 
models, at the cost of losing location-wise accuracy of road surface improvement projects. While LP and 
MILP models have progressed substantially in recent years, tradeoffs remain between precision, problem 
size, and incorporating realistic constraints and objectives. Although linear and mixed-integer linear 
programming models have become prevalent, most formulations exhibit limitations in accurately 
representing real-world pavement deterioration and maintenance dynamics. A key shortcoming is the use 
of oversimplified linear deterioration rates, when, in reality, pavement condition worsens nonlinearly over 
time. As surfaces age and traffic volumes accumulate, deterioration accelerates geometrically rather than 
remaining constant. Another limitation of current optimization models is the predominant reliance on 
metaheuristic solution techniques, like genetic algorithms. While metaheuristics efficiently handle large 
problem sizes, they sacrifice optimality guarantees. These stochastic search methods only identify feasible 
near-optimal solutions, not proven optimal ones. Additionally, there is no definitive way to quantify the  
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deviation from true optimality. This is concerning for infrastructure agencies making significant long-
term budget decisions, where even small condition improvements could yield large user benefit-cost 
ratios. Yet without optimal benchmarks, the performance of metaheuristics remains theoretically 
unvalidated. Some studies have proposed exact solution methods, like branch-and-bound, to find 
guaranteed optimal maintenance plans (Fwa et al., 1996). However, such techniques still struggle with 
real-world problem scales and non-linearities. 
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3. OBJECTIVES 

The objectives of the present research project are to (1) develop machine learning models using low-cost 
and widely accessible GPS, gyroscopes, and an accelerometer to automate the assessment of roadway 
pavement conditions; and (2) develop MILP optimization models for prioritizing and identifying the 
optimal selection of maintenance and repair treatments while considering budgetary limits. Additionally, 
the model uses a non-linear deterioration rate based on the existing conditions of roads, assuming that 
roads with poorer conditions deteriorate at a faster rate. The developed models are capable of generating 
color-coded maps of road network showing IRI and pinpointing the locations of anomalies, such as 
potholes. Additionally, these models are capable of generating action plans to optimize the allocation of 
funds for the improvement of existing road conditions. The outcome of this research work is expected to 
reduce inspection cost and enable the capability of generating more frequent maps of roadway pavement 
conditions. This will assist authorities in allocating funds more efficiently to enhance the performance and 
functionality of existing transportation networks, based on the most recent information on the conditions 
of the roads. 
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4. METHODOLOGY 

The research team used low-cost sensors to collect data from road patrol vehicle, including GPS logger, 
accelerometer and gyroscope, noise recorder, and camera, as shown in Figure 4-1. The collected raw data 
was analyzed to synchronize data from multiple sensors and recorded videos. Later, the research team 
manually investigated the videos to identify road surface anomalies that were used to develop supervised 
machine learning models, including decision trees, random forest, and artificial neural network (ANN). 
The performance of these models was evaluated on additional collected data to identify the best model 
based on their accuracy in identifying road surface anomalies. The best model was then used to analyze 
additional data to generate color-coded maps of road network showing IRI and pinpointing the locations 
of anomalies, as shown in Figure 4-1. 

 
Figure 4.1 System for Reporting Roadway Pavement Conditions 

To achieve the objectives of the present research work based on the proposed methodology, five main 
steps wre followed: (1) data collection; (2) data cleaning and processing; (3) road surface analysis; (4) 
model development; and (5) performance evaluation, as shown in Figure 4.2. The following sections 
discuss these steps in details. 
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Figure 4.2 Methodology of the present research work 

4.1 Data Collection 

This step focuses on collecting GPS and accelerometer data from various road conditions. To accomplish 
this, a multi-sensor device is mounted on the dashboard of a vehicle and a video recorder is installed in 
front of the vehicle to enable manual detection of road conditions. The collected data includes a diverse 
set of road surfaces and anomalies and is extensive enough to train machine learning models. It should be 
noted that while drivers typically try to avoid road irregularities, the driver was instructed to intentionally 
drive over them for the purpose of data collection. Additionally, to keep the scope of the research limited, 
data was collected on clear weather days and with the same vehicle type, excluding any effects of weather 
conditions or vehicle types on the data. 

The research team examined the recorded videos of the collected data and identified road anomalies, as 
shown in Figure 4-3. This process was undertaken to create a training dataset for model development and 
to assess the accuracy of models in recognizing road anomalies. The data collected comprises of various 
types of road anomalies such as lateral cracks (45%), lateral joints (17%), longitudinal cracks (16%), 
repaired areas (11%), manholes (8%), bridge expansion joints (2%), and potholes (1%), as shown in 
Figure 4-4. 
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Figure 4.3 Sample of different road anomalies in the database 

Figure 4.4 Percentage of anomaly types in the collected dataset 
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4.2 Data Cleaning and Processing 

This step focuses on cleaning and processing raw data collected from sensors, including timestamps, 
latitude, longitude, speed, triaxial acceleration, and triaxial gyroscope. To ensure high-quality data, the 
first 30 seconds of data collection were disregarded to account for sensor warm-up. Additionally, every 
sample of collected data was analyzed to remove records with missing data from any other sensors. For 
example, in cases of weak GPS signals or poor geo-location accuracy, the corresponding data records 
from other sensors were identified and removed. Furthermore, the triaxial acceleration data is transformed 
into a vehicle-relative coordinate system, with the z-axis being perpendicular to the road surface. The data 
from different sensors, which may be in different formats and frequencies, was also aggregated. Finally, 
recorded videos were split into smaller one-minute chunks, and only the timestamps of the first and last 
frames were recorded. This was highly useful and computationally efficient when generating snapshots or 
videos of detected road anomalies, as it significantly reduced the amount of video that must be analyzed. 

4.3 Road Surface Analysis 

This step focused on identifying potential road anomalies using the processed data discussed previously. 
To eliminate noise from acceleration data, which may be caused by sudden changes in acceleration, such 
as braking, we employed a low-pass filter. The filter enabled low-frequency components of the signal to 
pass through while reducing the amplitude of higher-frequency components, and resulted in a smoothed 
version of the original signal that was less affected by noise. There are different types of low-pass filters, 
but the most commonly used is the moving average filter. This filter calculates the average value of a 
certain number of consecutive data points and replaces the current data point with this average value, 
effectively eliminating high-frequency noise from the signal as it is unlikely that the noise will persist 
over multiple consecutive data points. It should be noted that the selection of the filter depends on the 
type of data, noise level, desired degree of smoothing and the specific requirements of the analysis. The 
smoothed time-series data was used to calculate the IRI as the square root of the sum of the absolute 
differences between the vertical acceleration of the vehicle and road surface, divided by the vehicle speed. 
The condition of road pavement is categorized based on the IRI according to Federal Highway 
Administration (Federal Highway Administration, 2014). 

The developed model was designed to generate color-coded road network based on IRI and pinpoint the 
location of anomalies, as shown in Figure 4-5. Additionally, the model generated a short video (< 5 
seconds) at identified anomaly. 
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Figure 4.5 Sample of color-coded road network showing IRI and anomaly locations 

4.4 Model Development 

This step focuses on developing models for (1) road surface anomaly detection; and (2) road surface 
repair and maintenance planning model, which are discussed separately in the following sections. 

4.4.1 Road Surface Anomaly Detection Model 

The research team developed three machine learning models, (1) Artificial Neural Network (ANN); (2) 
Decision Tree (DT); and (3) Random Forest (RF) on detecting road surface anomalies. 

4.4.1.1 Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) models consist of interconnected layers of artificial neurons, an input 
layer, one or more hidden layers, and an output layer. Each layer consists of multiple neurons that process 
and transmit information from one layer to another. In the input layer, the ANN receives data representing 
average, minimum, and maximum of vehicle, three-axis acceleration, and IRI value. These features are 
fed into the neurons, which compute weighted sums of the inputs and apply activation functions to 
produce output values. The hidden layers perform complex calculations on the input data, learning and 
extracting relevant patterns and relationships. The number of hidden layers and neurons per layer can be 
adjusted based on the complexity of the anomaly detection task. The output layer of the ANN model 
classifies the road surface anomalies. The weights and biases of the neurons are iteratively adjusted 
during the training process, using techniques such as backpropagation, to minimize the difference 
between the predicted output and the actual ground truth. The functionality of ANN models lies in their 
ability to learn and generalize from training data. By iteratively adjusting the weights and biases based on 
training examples, the ANN model gradually improves its ability to accurately detect anomalies in road 
surfaces. Once trained, the model can then process unseen road surface data and make predictions or 
classifications with high accuracy. 
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4.4.1.2 Decision Tree (DT) 

Decision Tree (DT) is a widely used supervised classification machine learning model where each node in 
the tree represents a feature or attribute, each branch represents a decision or rule, and each leaf represents 
the outcome or prediction. The topmost node in the decision tree is known as the root node. The goal of a 
decision tree is to predict the value of a target variable by learning simple decision rules inferred from the 
data features. The decision tree algorithm starts with the root node and recursively splits the data into 
subsets based on the values of the input features, creating internal nodes and branches in the process. The 
algorithm continues this process until it reaches a leaf node, which represents the final prediction. 

4.4.1.3 Random Forest (RF) 

Random Forest is an ensemble learning method that utilizes multiple decision trees to create a robust 
model. It enhances anomaly detection accuracy by training subsequent decision trees to focus on 
identifying anomalies missed by previous trees. One key advantage of Random Forest is its effectiveness 
in handling imbalanced datasets, where anomalies are infrequent compared to normal conditions. 
Traditional machine learning algorithms struggle with imbalanced data, but Random Forest overcomes 
this challenge. Its ability to generate multiple decision trees and aggregate their outputs enables superior 
handling of imbalanced classes, leading to improved detection performance for road surface anomalies. 

4.4.2 Optimizing Road Maintenance & Repair (M&R) 

This section focuses on developing a mixed integer linear programing (MILP) optimization model for 
optimizing the plan and schedule of M&R strategies over time, while considering annual budgetary 
limits. The optimization model is developed in four main steps: (1) identifying decision variables; (2) 
defining objective function; (3) formulating constraints; and (4) executing model computations. These 
steps are discussed as follows: 

4.4.2.1 Decision variables 

The road network is divided into segments of a fixed length, usually around one mile, and these segments 
are analyzed over a specific time period, typically 10 years. While it is possible to use shorter or longer 
segments for analysis, long segments do not accurately capture the variations in pavement conditions 
since they become less uniform. On the other hand, short segments create too much detail and lead to 
excessive variations in pavement condition across the road network, making the model complex and 
difficult to handle due to the increased size. Initially, these segments are assigned to have the same 
condition as the existing IRI values. At the end of each year, the IRI of a segment can either deteriorate or 
improve, depending on the chosen maintenance and repair (M&R) strategy for that particular year. The 
M&R strategies include a range of options, including, but not limited to, preventive maintenance, which 
is the simplest and least expensive option, to rehabilitation, which is the most complex and costly 
alternative. Therefore, it is necessary to identify decision variables that effectively model the planning of 
M&R strategies for each road segment on an annual basis. 

One group of decision variables, 𝑥𝑥𝑖𝑖,𝑡𝑡,𝑚𝑚, is identified to model the selection of M&R strategies over time 
for the entire road network. Accordingly, 𝑥𝑥𝑖𝑖,𝑡𝑡,𝑚𝑚 is a binary decision variable that is 1 if 𝑚𝑚th M&R strategy 
is selected at year 𝑡𝑡 and road segment 𝑖𝑖; and 0 otherwise, as shown in Figure 4-6. M&R strategies have 
different costs and reduce IRI at certain amounts. For example, a simple preventative maintenance might 
cost $16,000 and reduce IRI by 19 inch/mile; whereas a light rehabilitation might cost $130,000 and 
reduce IRI by 76 inch/mile. The selection of M&R strategies depends on the available annual budget and 
improvement of road condition in terms of reduced IRI. If no M&R strategies are selected, the condition 
of road segment degrades by increasing the IRI. The degradation can be modeled at a fixed or variable 
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rate, depending on the current road condition, which will be discussed in the following sections. The 
identified decision variables are capable of modeling the selection of M&R strategies on an annual basis 
for each road segment and quantifying the corresponding IRI values. 

 

Figure 4.6 Identified decision variables 
4.4.2.2 Constraints 

The constraints in the model are formulated to ensure feasibility of the generated plan and schedule of 
M&R strategies within the annual budgetary limit. These groups of constraints include:  

• C1 ensures that only one M&R strategy is selected, at most, for each road segment, with the 
possibility of no strategy being selected. 

• C2 ensures that the IRI at each road segment is reduced in accordance with the chosen M&R 
treatment, while ensuring it does not fall below a specified threshold. This threshold can be defined as 
the minimum acceptable IRI for a road segment. For example, it can be set at 60 inches per mile. In 
addition, it ensures that if no M&R treatment gets selected, the road condition degrades at a 
predefined rate. 

• C3 ensures that for a given road segment, M&R strategies cannot be selected in two consecutive 
years. This constraint helps maintain a reasonable time gap between M&R activities on the same 
segment. 

• C4 ensures that the total cost of selected M&R strategies in each year remains within the annual 
budget. This constraint prevents the cumulative cost from exceeding the available financial resources. 

4.4.2.3 Objective Function 

The objective function is designed to quantify the total IRI of the road network for a predefined study 
period. While the initial IRI of roads are set at the existing road conditions, the IRI of road network 
reduces according to the selected M&R strategies of each year. However, to account for deterioration of 
road segments at each year, a fixed rate, 𝜆𝜆 is considered to increase the IRI of the road segments over 
time. For example, 𝜆𝜆 can be set at 15 inch/mile to increase the IRI of the road segments at each year. 
While 𝜆𝜆 depends on several factors, such as traffic loads, climate and weather conditions, and 
construction quality of pavement, a fixed rate is often used to generalize and simplify M&R budgetary 
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planning. However, this assumption is quite simplified and does not reflect the impact of current road 
condition on its deterioration rate. It is generally the case that as the IRI of a road segment increases, the 
deterioration rate also increases. This assumption is then addressed in the following sections. 

𝑓𝑓(𝑥𝑥): ��𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡=0 −� ��𝛼𝛼𝑚𝑚𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡�
𝑀𝑀

𝑚𝑚=1

𝑇𝑇

𝑡𝑡=1

�
𝑅𝑅

𝑖𝑖=1

+ 𝜆𝜆���1 − � 𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡

𝑀𝑀

𝑚𝑚=1

�
𝑇𝑇

𝑡𝑡=1

𝑅𝑅

𝑖𝑖=1

 

C1: � 𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡

𝑀𝑀

𝑚𝑚=1

≤ 1 ∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} 
∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 

C2: 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡=0 −� ��𝛼𝛼𝑚𝑚𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡�
𝑀𝑀

𝑚𝑚=1

𝐿𝐿

𝑡𝑡=1

+ 𝜆𝜆��1 − � 𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡

𝑀𝑀

𝑚𝑚=1

�
𝐿𝐿

𝑡𝑡=1

≥ 𝐼𝐼𝐼𝐼𝐼𝐼∗ 
∀ 𝐿𝐿 ∈ {1,2, … ,𝑇𝑇} 
∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 
∀ 𝑚𝑚 ∈ {1,2, … ,𝑀𝑀} 

C3: � 𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡+1

𝑀𝑀

𝑚𝑚=1

≤ 1 − � 𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡

𝑀𝑀

𝑚𝑚=1

 ∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 
∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇 − 1} 

C4: � ��𝑐𝑐𝑚𝑚𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡�
𝑀𝑀

𝑚𝑚=1

𝑅𝑅

𝑖𝑖=1

≤ 𝐵𝐵𝑡𝑡 ∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} 

𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡 ∈ {0,1} 

Where, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡=0 is the IRI for road segment 𝑖𝑖 at time 𝑡𝑡 = 0; 𝑇𝑇 is the number of years in the study period; 
𝐼𝐼 is the number of road segments; 𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡 is a binary decision variable that indicates if 𝑚𝑚th M&R strategy 
is selected or not at year 𝑡𝑡 and road segment 𝑖𝑖; 𝑐𝑐𝑚𝑚 is the cost of 𝑚𝑚th M&R strategy; 𝜆𝜆 is a fixed 
deterioration rate at which the IRI increases over time.  

As mentioned above, the deterioration rate, 𝜆𝜆 in the model above is set at a fixed rate. However, in real 
practice, the deterioration rate is non-linear depending on IRI, as shown in Figure 4.7. For road segments 
with an IRI below 60 inches per mile (indicating good condition), the deterioration rate remains constant 
at three inches per mile. In the range of 60 to 94 inches per mile, the deterioration rate varies at a constant 
rate. Beyond this range, the deterioration rate increases further, reaching a constant rate for road segments 
in poor condition (IRI > 220 inches per mile). This non-linear relationship between IRI and the 
deterioration rate reflects the deterioration more accurately. 



 

  

Figure 4.7 Deterioration rate as a function of IRI 

To model the non-linear deterioration rate for road segments, a piecewise linear function is used to 
determine the deterioration rate for each road segment based on its IRI. Accordingly, two other types of 
decision variables, 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 and 𝑧𝑧𝑖𝑖,𝑗𝑗,𝑡𝑡, are identified, where 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 is a nonnegative continuous decision 
variable used to impose a linear combination at each interval of the piecewise linear function. 𝑧𝑧𝑖𝑖,𝑗𝑗,𝑡𝑡 is a 
binary decision variable used to impose that at most two of the 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 can be nonzero. Accordingly, several 
other constraints are formulated in the model. C5 ensures that the sum of 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 are equal to one; C6, C7, 
C8 are other groups of constraints that impose the relationship between the 𝑦𝑦𝑖𝑖,𝑗𝑗,𝑡𝑡 and 𝑧𝑧𝑖𝑖,𝑗𝑗,𝑡𝑡. Finally, C9 
ensures that IRI of road segments are initially set at the existing condition, and C10 ensures IRI of road 
segments are improved or degraded. It should be noted that the last M&R treatment, “Reconstruction”, is 
excluded from C9 and C10. The reason is that when a road segment gets reconstructed, its IRI drops to 
the lowest IRI value, regardless of the pre-construction IRI value. 
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𝑓𝑓(𝑥𝑥)∗: ��𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡=0 −��𝛼𝛼𝑚𝑚𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡�
𝑀𝑀−1

𝑚𝑚=1

+ �2𝑦𝑦𝑖𝑖,1,𝑡𝑡 + 3𝑦𝑦𝑖𝑖,2,𝑡𝑡 + 10𝑦𝑦𝑖𝑖,3,𝑡𝑡 + 20𝑦𝑦𝑖𝑖,4,𝑡𝑡 + 20𝑦𝑦𝑖𝑖,5,𝑡𝑡�
𝑇𝑇

𝑡𝑡=1

𝑅𝑅

𝑖𝑖=1

 

C2*: 60𝑦𝑦𝑖𝑖,1,𝑡𝑡 + 95𝑦𝑦𝑖𝑖,2,𝑡𝑡 + 170𝑦𝑦𝑖𝑖,3,𝑡𝑡 + 220𝑦𝑦𝑖𝑖,4,𝑡𝑡 + 1000𝑦𝑦𝑖𝑖,5,𝑡𝑡 ≥ 𝐼𝐼𝐼𝐼𝐼𝐼∗ ∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 
∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} 

C5: 𝑦𝑦𝑖𝑖,1,𝑡𝑡 + 𝑦𝑦𝑖𝑖,2,𝑡𝑡 + 𝑦𝑦𝑖𝑖,3,𝑡𝑡 + 𝑦𝑦𝑖𝑖,4,𝑡𝑡 + 𝑦𝑦𝑖𝑖,5,𝑡𝑡 = 1 ∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} 
∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 

C6: 

𝑦𝑦𝑖𝑖,1,𝑡𝑡 ≤ 𝑧𝑧𝑖𝑖,1,𝑡𝑡 
𝑦𝑦𝑖𝑖,2,𝑡𝑡 ≤ 𝑧𝑧𝑖𝑖,2,𝑡𝑡 
𝑦𝑦𝑖𝑖,3,𝑡𝑡 ≤ 𝑧𝑧𝑖𝑖,3,𝑡𝑡 
𝑦𝑦𝑖𝑖,4,𝑡𝑡 ≤ 𝑧𝑧𝑖𝑖,4,𝑡𝑡 
𝑦𝑦𝑖𝑖,5,𝑡𝑡 ≤ 𝑧𝑧𝑖𝑖,5,𝑡𝑡 

∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} 
∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 

C7: 𝑧𝑧𝑖𝑖,1,𝑡𝑡 + 𝑧𝑧𝑖𝑖,2,𝑡𝑡 + 𝑧𝑧𝑖𝑖,3,𝑡𝑡 + 𝑧𝑧𝑖𝑖,4,𝑡𝑡 + 𝑧𝑧𝑖𝑖,5,𝑡𝑡 ≤ 2 ∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} 
∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 

C8: 

𝑧𝑧𝑖𝑖,1,𝑡𝑡 + 𝑧𝑧𝑖𝑖,3,𝑡𝑡 ≤ 1 
𝑧𝑧𝑖𝑖,1,𝑡𝑡 + 𝑧𝑧𝑖𝑖,4,𝑡𝑡 ≤ 1 
𝑧𝑧𝑖𝑖,1,𝑡𝑡 + 𝑧𝑧𝑖𝑖,5,𝑡𝑡 ≤ 1 
𝑧𝑧𝑖𝑖,2,𝑡𝑡 + 𝑧𝑧𝑖𝑖,4,𝑡𝑡 ≤ 1 
𝑧𝑧𝑖𝑖,2,𝑡𝑡 + 𝑧𝑧𝑖𝑖,5,𝑡𝑡 ≤ 1 
𝑧𝑧𝑖𝑖,3,𝑡𝑡 + 𝑧𝑧𝑖𝑖,5,𝑡𝑡 ≤ 1 

∀ 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇} 
∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 

C9: 

60𝑦𝑦𝑖𝑖,1,𝑡𝑡 + 95𝑦𝑦𝑖𝑖,2,𝑡𝑡 + 170𝑦𝑦𝑖𝑖,3,𝑡𝑡 + 220𝑦𝑦𝑖𝑖,4,𝑡𝑡 + 1000𝑦𝑦𝑖𝑖,5,𝑡𝑡

≥ 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡=0 − ��𝛼𝛼𝑚𝑚𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡�
𝑀𝑀−1

𝑚𝑚=1

− 𝑀𝑀 ∗ 𝑥𝑥𝑖𝑖,𝑀𝑀,𝑡𝑡

+ �2𝑦𝑦𝑖𝑖,1,𝑡𝑡 + 3𝑦𝑦𝑖𝑖,2,𝑡𝑡 + 10𝑦𝑦𝑖𝑖,3,𝑡𝑡 + 20𝑦𝑦𝑖𝑖,4,𝑡𝑡 + 20𝑦𝑦𝑖𝑖,5,𝑡𝑡� 

𝑡𝑡 = 1 
∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 

C10: 

60�𝑦𝑦𝑖𝑖,1,𝑡𝑡 − 𝑦𝑦𝑖𝑖,1,𝑡𝑡−1� + 95�𝑦𝑦𝑖𝑖,2,𝑡𝑡 − 𝑦𝑦𝑖𝑖,2,𝑡𝑡−1� + 170�𝑦𝑦𝑖𝑖,3,𝑡𝑡 − 𝑦𝑦𝑖𝑖,3,𝑡𝑡−1� + 220�𝑦𝑦𝑖𝑖,4,𝑡𝑡 − 𝑦𝑦𝑖𝑖,4,𝑡𝑡−1�
+ 1000�𝑦𝑦𝑖𝑖,5,𝑡𝑡 − 𝑦𝑦𝑖𝑖,5,𝑡𝑡−1�

≥  2𝑦𝑦𝑖𝑖,1,𝑡𝑡 + 3𝑦𝑦𝑖𝑖,2,𝑡𝑡 + 10𝑦𝑦𝑖𝑖,3,𝑡𝑡 + 20𝑦𝑦𝑖𝑖,4,𝑡𝑡 + 20𝑦𝑦𝑖𝑖,5,𝑡𝑡 − ��𝛼𝛼𝑚𝑚𝑥𝑥𝑖𝑖,𝑚𝑚,𝑡𝑡�
𝑀𝑀−1

𝑚𝑚=1

− 𝑀𝑀

∗ 𝑥𝑥𝑖𝑖,𝑀𝑀,𝑡𝑡 

∀ 𝑡𝑡 ∈ {2, … ,𝑇𝑇} 
∀ 𝑖𝑖 ∈ {1,2, … ,𝐼𝐼} 
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5. FEASIBILITY ANALYSIS OF WIDESPREAD APPLICATION 

The results of the analyzed case study and performance of the developed models show promising 
application of such models to be widely used. For example, installing low-cost sensors at police patrol 
vehicles and/or taxi vehicles to generate maps of roadway pavement conditions. For example, Eriksson et 
al, analyzed practicality of using a system where drivers can opt in and have vibration and GPS sensors 
installed on their vehicles to assess road surface conditions. The system was deployed on seven taxis in 
the Boston area and used machine-learning models to identify potholes and other severe road surface 
anomalies (Eriksson et al., 2008). However, the developed model was not tested on a larger scale, and its 
results are not clear. Additionally, little work was conducted to analyze the willingness of drivers to sign 
up for such systems, especially, in the absence of incentives. One major challenge of widespread 
application of sensing devices for road surface assessment is the concern of privacy on collected data. To 
address this challenge, Basudan et al. developed a privacy-preserving protocol for enhancing security in a 
vehicular crowdsensing-based road surface condition monitoring system (Basudan et al., 2017). However, 
the model was not integrated into existing road surface assessment models, and it is not clear how 
challenging and computationally expensive it is to integrate security protocols in data collection for road 
surface assessment. One key factor of successful widespread application of road surface assessment 
models is to use widely accessible sensor devices, such as cellphones. The built-in accelerometer, 
gyroscope, and GPS sensors of smartphones are low-cost and widely accessible tools anyone can use for 
collecting data. For example, Singh et al. developed computationally efficient machine learning that can 
be installed on different types of devices with a high detection accuracy of over 85% (Singh et al., 2017). 

The feasibility of widespread application of sensor devices for road surface assessment and anomaly 
detection depends on a variety of factors, including the cost and durability of the sensors, ability to 
accurately interpret sensor data, and infrastructure and resources available for deploying and maintaining 
the sensors. Additionally, it also depends on the legal and regulatory framework and potential benefits of 
using these sensors. However, it is likely that sensor technology will continue to improve and become 
more widely adopted in the future, making it more feasible for widespread application of sensor devices 
for road surface assessment and anomaly detection. The combination of sensors like LIDAR, cameras, 
and ultrasonic sensors, deep learning and AI techniques can provide high accuracy and real-time road 
surface condition and anomaly detection. 

  



6. CASE STUDY 

To evaluate performance of the developed models and demonstrate their capabilities in identifying road 
conditions and the optimal schedule and plan for M&R, a case study of road network in Denver, CO, is 
analyzed. The case study consists of a 172 lane miles of urban road network. Approximately, 87% of the 
lane miles were either in “Very Good,” “Good,” “Fair,” and “Poor” condition, whereas nearly 11% of the 
roads were in “Mediocre” condition, as shown in Figure 6.1. 
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Figure 6.1 Percentage of lane miles 

To evaluate performance of the developed machine learning models and measure their accuracy in 
identifying road surface anomalies, additional dataset of road surface conditions not used during the 
model development were analyzed. Table 6.1 shows the accuracy of the developed models in identifying 
road anomalies on train and test datasets. To avoid overfitting in the models, the early termination was 
enforced to stop training after 100 iterations. In all cases, accuracy of the models decreased on test dataset 
compared to that of train dataset, since the train dataset was used during the model development and the 
model performance is evaluated based on that. RF model has the highest accuracy in identifying road 
anomalies. The reason is that the RF is a more adaptive to capture non-linearity of the data, and it consists 
of multiple DT models. The ANN model had the lowest accuracy due to the imbalanced dataset.  

Table 6.1 Performance of the developed models 
Model Accuracy (%) 

train dataset test dataset 

ANN 76.4% 67.2% 
DT 84.8% 78.4% 
RF 91.1% 83.6% 
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Table 6.2 shows the different M&R treatments with their corresponding reductions in IRI and unit costs 
(Saha & Ksaibati, 2018). Preventive maintenance M&R is a periodically and low-cost treatment to 
improve the current road condition slightly. However, light, and medium rehabilitation M&R improve the 
road condition even further and are generally used to upgrade the road condition by one or two levels, 
respectively. The last M&R level reconstructs the road and improves the IRI according to the threshold 
for very good category. 

Table 6.2 M&R treatments and corresponding reduction in IRI (Saha & Ksaibati, 2018) 
Treatment M&R actions IRI reduction 

(inch/mile) 
M&R treatment 

unit cost ($/mile) 

Preventive maintenance Slurry seal and 
microsurfacing 

19 16,000 

Light rehabilitation 5 cm milling, 4-6 cm hot 
mix asphalt (HMA) 
overlay 

76 52,000 

Medium rehabilitation 10 cm milling, 8-12 cm 
hot mix asphalt (HMA) 
overlay 

127 160,000 

Heavy rehabilitation Reconstruction Regardless of road 
condition, IRI reaches at 

60 

800,000 

Results of the optimization model, based on different annual budgets, provide valuable insights into the 
changes in the International Roughness Index (IRI) over time and demonstrate the impact of maintenance 
and repair (M&R) treatments on the road network's condition. For an annual budget of $400,000, the 
initial IRI is 133. Despite the implementation of M&R treatments, the degradation rate of the road 
network is higher than the rate of improvement, resulting in an average increase in the IRI over the 10-
year period. The final IRI reaches 173.9, indicating a worsening road condition, as shown in Figure 6-2. 
As the annual budget increases to $600,000, the positive impact of M&R treatments becomes evident. 
The IRI steadily decreases over time, resulting in a final IRI of 146.8 after 10 years. With a budget of 
$800,000, the IRI experiences further improvement, reaching a final value of 124.0. The higher budget 
allows for more extensive M&R treatments, effectively slowing down the deterioration process, as shown 
in Figure 6-2. Increasing the budget to $1 million leads to a significant improvement in the IRI, with the 
final value decreasing to 104.5. This highlights the importance of adequate budget allocation for 
achieving substantial road network improvements. Notably, when the budget reaches $1.5 million and $2 
million, substantial improvements in the road network's condition are observed. The IRI values decrease 
significantly, reflecting the positive impact of higher budgets and more extensive M&R treatments. The 
final IRI after 10 years for the $1.5 million budget is 65.7, while 61 IRI for the $2 million budget, as 
shown in Figure 6-2. These results demonstrate the critical role of budget allocation for M&R activities in 
maintaining and improving road conditions. Higher budgets allow for more comprehensive and frequent 
M&R treatments, leading to significant reductions in the IRI over time. Thus, appropriate budget planning 
and allocation are crucial for ensuring the sustainability and longevity of road networks. 



 

Figure 6.2 Average IRI for various budget scenarios 

The outcome of the model can provide valuable insights on identifying sufficient budgets to maintain and 
enhance road conditions. There is a tipping point where the degradation of the road network is the same 
as the rate of road condition improvement, as shown in Figure 10. Adequate funding allows for more 
comprehensive and proactive M&R strategies, slowing deterioration and extending the lifespan of road 
infrastructure. This emphasizes the importance of avoiding underfunding, as it can lead to a decline in 
road conditions and increased costs in the long run. 
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Figure 6.3 Impact of different annual budget on average IRI after 10 years 

The road segments are categorized under different conditions for the existing condition, at year five, and 
at year 10, based on the identified optimal M&R treatment with a budget of $2 million per year, as shown 
in Figure 11. At the existing condition, the road network is distributed across various road condition 
categories. Approximately 23% (39 miles) of the roads are classified as "Very Good," 21% (37 miles) as 
"Good," 28% (48 miles) as "Fair," 13% (23 miles) as "Mediocre," and 15% (25 miles) as "Poor." These 
percentages provide a baseline for assessing the effectiveness of the M&R treatment plan. After five years 
of implementing the optimal M&R treatment plan, there are noticeable changes in the road conditions. 
The percentage of roads in the "Very Good" category increases to 38% (65 miles), indicating an 
improvement. The "Good" category shows a substantial increase to 53% (91 miles), suggesting a 
significant positive impact. However, there are still areas that need improvements. The percentage of 
roads in the "Fair" category is 4% (eight miles), while the "Mediocre" and "Poor" categories decrease to 
3% (five miles) and 2% (three miles), respectively. Looking ahead to the 10-year mark, the road 
conditions undergo a remarkable transformation. The percentage of roads in the "Very Good" category 
increases to 100% (172 miles), indicating a complete transition to a higher quality category. Furthermore, 
the percentages of roads in the "Good," "Fair," "Mediocre," and "Poor" categories drop to 0%, indicating 
the successful revitalization of the road network. These results demonstrate effectiveness of the optimal 
M&R treatment plan in improving the road conditions over a 10-year planning period. The plan 
effectively targets the roads in need of maintenance and rehabilitation, resulting in a significant increase 
in the percentage of roads in better conditions. The complete elimination of roads in lower-quality 
categories signifies a successful outcome in terms of road network revitalization. 
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Figure 6.4 Road conditions for the existing condition, at year five, and at year 10 based on the identified 
optimal M&R treatment with an annual budget of $2 million 

Miles of untreated roads along with treated ones for the identified optimal M&R treatment with a budget 
of $2 million per year, are shown in Figure 12. In the first year, the majority of the roads, 133 miles, were 
left untreated with the "Do nothing" approach. A small portion received preventive maintenance (2 
miles), and 37 miles underwent light rehabilitation. There were no instances of medium or heavy 
rehabilitation during this year. In the following years, we observe variations in the distribution of M&R 
treatments. The number of miles left untreated gradually decreases, as the "Do nothing" category 
decreases over time. This indicates a shift toward proactive maintenance strategies. Preventive 
maintenance and light rehabilitation efforts show a relatively steady pattern, with slight fluctuations in the 
number of miles treated. Notably, in year six, there was a significant increase in the miles receiving 
preventive maintenance (71 miles), suggesting a more proactive approach to road preservation. In year 
seven, we observed a rise in miles receiving medium rehabilitation (12 miles) and a small number of 
miles undergoing heavy rehabilitation (three miles). This indicates a need for more extensive 
interventions to address road deterioration in specific areas. The following years show a varying 
distribution of M&R treatments. Preventive maintenance and light rehabilitation continue to be applied, 
although with some fluctuations in the number of miles treated. Medium rehabilitation efforts decrease, 
while heavy rehabilitation becomes less prevalent, with only sporadic instances. At the 10-year mark, the 
M&R treatment plan reflects a balance between proactive strategies and targeted rehabilitation. The "Do 
nothing" category has significantly decreased, indicating a proactive approach to road maintenance. 
Preventive maintenance and light rehabilitation remain the primary treatments, suggesting a focus on 
preserving and improving road conditions before they deteriorate further. Overall, the results demonstrate 
a shift toward more proactive maintenance strategies over time. The M&R treatment plan prioritizes 
preventive measures, such as regular maintenance and light rehabilitation, to address issues before they 
become severe. This approach helps extend the lifespan of roads and minimize the need for extensive and 
costly rehabilitation efforts. 



 

Figure 6.5 Miles treated with the optimal M&R plan based on the solution  
with an annual budget of $2 million 

The IRI of road segments over time for the identified optimal M&R treatment with a budget of $2 million 
per year, are shown in Figure 13. The general trend of road segments indicates an improvement in road 
conditions, as evidenced by decreases in IRI. This positive change is due to maintenance and repair 
treatments implemented on these segments. However, it is important to note for certain road segments 
where no maintenance and repair treatments were applied, the IRI slightly increases at a fixed rate each 
year to account for degradation based on their existing road condition. This suggests that without regular 
maintenance interventions, these segments experience gradual deterioration over time. 
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Figure 6.6 IRI of road segments over time based on the identified optimal M&R treatment  
with a budget of $2 million per year 
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7. CONCLUSIONS AND SUMMARY 

This research work presented the development of models for road surface anomaly detection and 
optimization of maintenance and repair (M&R) interventions. The research team collected data using low-
cost and widely accessible GPS, gyroscopes, accelerometer. The data were then processed and analyzed 
to prepare input data for supervised machine learning classification models, where the data was 
meticulously analyzed, and road anomalies were classified. This allowed the development of a baseline 
for evaluating the performance of machine learning models. Three machine learning models, (1) Artificial 
Neural Network (ANN); (2) Decision Tree (DT); and (3) Random Forest (RF) were developed. Using the 
collected data and identified anomalies, the performance of these model and their accuracy in identifying 
road anomalies were evaluated. The RF model reported the highest accuracy in identifying road 
anomalies at 83.6%, while ANN reported the lowest accuracy. The reason for better performance of RF 
model compared to others is the capability of handling unbalanced input dataset where the number of 
anomalies compared to normal road conditions is insignificant. Additionally, RF models are assembly of 
multiple DT models, where each DT model improves the classification of previous DT models. 

Furthermore, this research presented the development of a mixed integer linear programing (MILP) 
optimization model for optimizing the plan and schedule of M&R strategies over time, while considering 
annual budgetary limits. The optimization model was developed in four main steps: (1) identifying 
decision variables; (2) defining objective function; (3) formulating constraints; and (4) executing model 
computations. Decision variables were identified to model the selection of M&R strategies for each road 
segment on an annual basis, while constraints were formulated to ensure feasibility and budgetary limits. 
The objective function quantified the total International Roughness Index (IRI) of the road network over 
time, accounting for deterioration and M&R interventions. Notably, the degradation of road segments was 
modeled using a piecewise linear function that captured the non-linear relationship between IRI and 
deterioration rate. The optimization model provided valuable insights into the impact of different annual 
budgets on road conditions over a 10-year period. It revealed that adequate funding was crucial for 
maintaining and enhancing road conditions. The findings indicated a tipping point where the degradation 
of the road network was equivalent to the rate of improvement. Underfunding led to a decline in road 
conditions and increased costs in the long run. However, with sufficient budgets, the model demonstrated 
significant improvements in road conditions over time. The results based on the solution obtained for an 
annual budget of $2 million, showed that all the roads in the analyzed case study will reach to “Very 
good” condition after 10 years. 

Finally, the feasibility of widespread application of sensors on smartphone devices was discussed. While 
the research team identified possible potentials of the widespread application of such models, there is no 
practical solution yet that addresses the data privacy concerns of road users, and lack of motivation for 
participants. One research area of interest is to analyze the feasibility of tax deduction, or tax credits for 
participants that report road conditions using low-cost sensors. Future research is needed to expand the 
capabilities of the detection and optimization models to increase the accuracy of detecting road conditions 
and scheduling their maintenance in a large network and within available budget.  
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