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ABSTRACT  

Potholes are a significant pavement distress compromising safety and causing costly damage. They result 
from pavement deterioration due to aging, weather, and traffic overloads, with the Mountain Plains region 
particularly affected due to freeze/thaw cycles. Timely identification and repair of potholes are critical for 
effective highway maintenance. This research develops an automated deep learning-based pothole detection 
and mapping tool using the fusion of visible and thermal images. Visible images alone often fail in poor 
lighting or adverse weather conditions, whereas thermal images offer robust detection but lack texture details. 
Integrating both image types enhanced detection accuracy. We created a database of geotagged and labeled 
trios of visible, thermal, and fused images using a low-cost FLIR ONE thermal camera connected to a 
smartphone. Three machine-learning algorithms were proposed and compared: Anisotropic Diffusion Fusion 
(ADF) + Mask R-CNN, RTFNet, and RTFNet with Enhancement Parameters (EPs). The RTFNet method 
achieved the best F1-score of 93.7% in daytime and 90.9% in nighttime scenarios. A Bright-Dark detector 
was developed to optimize algorithm selection based on lighting conditions. Detected potholes were mapped 
using GPS data, and the trained algorithm was packaged into a GUI tool that can be used by highway 
maintenance teams. 
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EXECUTIVE SUMMARY 

This report presents the development of a visible and thermal imaging-based deep learning approach for the 
automated and robust detection of potholes to prioritize highway maintenance. Potholes, a primary pavement 
distress, significantly compromise road safety and incur substantial repair costs. The Mountain Plains region 
experiences frequent potholes due to harsh weather conditions, necessitating efficient and accurate detection 
for timely highway maintenance. 

Objectives 

The main objectives of this study are: (1) To create a database of geotagged and labeled images (visible, 
thermal, and fused) for training pothole detection algorithms. (2) To develop deep learning algorithms for 
accurate and robust pothole detection using these images. (3) To compare the performance of these algorithms 
under various conditions to determine the benefits of integrating thermal and visible images. (4) To develop 
automated tools for pothole detection, mapping, and updating. 

Methodology 

A unique dataset of pothole images was created using a low-cost FLIR ONE thermal camera attached to a 
smartphone. This dataset includes geotagged and labeled trios of visible, thermal, and fused images. Three 
machine learning algorithms, i.e., Anisotropic Diffusion Fusion (ADF) + Mask R-CNN, RTFNet, and RTFNet 
with Enhancement Parameters (EPs), were proposed and compared for their effectiveness in pothole 
detection. 

Key Findings 

1. Image fusion and detection: The fusion of visible and thermal images significantly improved 
pothole detection accuracy. The RTFNet algorithm achieved the best F1-score of 93.7% in daytime 
scenarios and 90.9% in nighttime scenarios. 

2. Algorithm comparison: The RTFNet outperformed the other methods in terms of precision and 
recall, particularly under varying lighting conditions. The incorporation of Enhancement Parameters 
further improved detection accuracy in low-light scenarios. 

3. Automated detection tool: An automated pothole detection and mapping tool with a graphical user 
interface (GUI) was developed. This tool uses the trained algorithms to detect potholes and map their 
locations using GPS data from the images. 

Implications for Highway Maintenance 

The developed tool and algorithms enable highway maintenance teams to prioritize repairs based on accurate 
and timely pothole detection. This approach not only enhances road safety but also optimizes maintenance 
resource allocation. 

Future Work 

Future research will focus on further improving the detection algorithms by incorporating additional data and 
refining the enhancement parameters. The tool will be tested and validated in different regions to ensure its 
robustness and generalizability.
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Background 

Roads contribute significantly to the development of the region and the growth of the population.      Concrete 
and asphalt are the most commonly used materials for road paving nowadays. Potholes are primary pavement 
distress that can compromise safety and cause expensive damage claims (see Figure 1.1). Potholes are the 
results of deterioration of pavements due to aging, weather and traffic overloads and are common problems 
across the United States. The dim light at night or puddles after rain caused potholes to be hard to discover. 
According to a study by American Automobile Association (AAA) in 2016, U.S. motorists suffer repair costs 
of three billion dollars annually from damage caused by potholes. Drivers, on average, spend $300 for vehicle 
damage from potholes (AAA 2016). 

 
Figure 1.1 Samples of potholes 

Figure 1.2 shows an example of the number of potholes reported and repaired in Seattle. The number of 
potholes increase because of the storm passing every winter (Bergerson 2022). Potholes are even more 
common in the Mountain Plains region due to the snow and freeze/thaw effect. Thus, identifying and repairing 
potholes is one critical aspect of highway maintenance because it will form larger potholes from traffic and 
heavy vehicles such as trucks and buses if potholes aren’t repaired in time. 
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Figure 1.2 The number of new pothole locations reported by the public per week in Seattle 

(Bergerson 2022) 

According to a report from the U.S. Department of Transportation, there are more than 820,519 miles of roads 
in the United States (USDT 2022). It is time- and cost-consuming to track every road condition by only using 
manpower. Therefore, accurate, robust, and fast detection of potholes is critical to enabling timely and cost-
effective pavement maintenance. 

Currently, there are some studies that have used deep learning algorithms for pothole detection. For example, 
Maeda et al. (2018) used deep neural networks with smartphone images to do road damage detection and 
classification. Arjapure & Kalbande (2021) developed deep learning model for pothole detection and area 
computation. However, there are some challenges that still need to be overcome. Most of the developed 
models so far focused on using visible (RGB) images for the detection. However, when there is insufficient 
lighting or low contrast with surroundings (e.g., if is dark or in poor weather conditions such as cloudy, rain, 
fog), the detection based on only visible images may not perform well. Despite the fact that thermal images 
contain fewer texture details than visible images, they can provide the temperature difference between 
potholes and surrounding pavement. Recently, Bhatia et al. (2022) developed a deep learning model for 
pothole detection using thermal images, showing the promise of using thermal images to improve pothole 
detection. The fusion of both visible and thermal images potentially integrates features from both. However, 
there is still a lot of research that needs to be done to fully explore and leverage the advantages of integrating 
information from both visible and thermal images to improve pothole detection. To train machine learning 
algorithms for pothole detection, training data/images are needed. However, so far there is no existing dataset 
that contains labeled visible and thermal images of potholes. Besides, the use of image fusion algorithms for 
the purpose of pothole detection has not been investigated. Also, tools are needed to facilitate the automated 
pothole detection and mapping and use by stakeholders. 

1.2 Research Objectives 

The goal of this research is to develop visible and thermal imaging and a deep learning-based approach for 
automated and robust detection of potholes to enable timely and cost-effective maintenance of highways. The 
following major objectives are designed to meet this goal: 

1. Create a unique and valuable database of geotagged and labeled trios of visible, thermal, and fused 
images for training pothole detection algorithms. 
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2. Develop deep learning algorithms for automated and robust pothole detection based on visible, 
thermal, and fused images. 

3. Test the hypothesis that the incorporation of thermal and fused images could lead to more accurate 
and robust pothole detection by comparing the detection performances for different cases. 

4. Develop automated tools for pothole detection, pothole mapping and updating. 

 Research Method 

To address the above goals, this research proposes integration of both visible and thermal images captured by 
a visible and thermal dual camera and the use of deep learning to enable robust, accurate and automated 
detection of potholes to help prioritize highway maintenance. An overview of the proposed research is shown 
in Figure 1.3. Instead of relying only on visible images, both visible and thermal images, and the fused images 
with salient features from both visible and thermal images, will be used to improve the accuracy and 
robustness of pothole detection. 

First, a unique database of geotagged and labeled trios of visible, thermal, and fused images will be created 
for training pothole detection algorithms. This will be achieved by using visible and thermal FLIR one camera 
mounted on cars to take pictures of the same road surfaces. The images will include pavements with and 
without potholes. To include images under different lighting conditions and weather conditions in the image 
database, images will be collected for the same road segments during different times of the day and also under 
different weather conditions. Based on the collected visible and thermal images, image fusion techniques will 
be used to extract features from these images to establish corresponding fused images (Hou et al. 2021). The 
collected images will be geotagged using GPS information. To standardize the images, some preprocessing 
(e.g., cropping, resizing) will be applied to the images. Then, using tools, such as LabelMe, these images will 
be manually labeled as with potholes or not, and for those with potholes, the potholes will be annotated. The 
annotation will be applied to all three types of images. Out of all the images, three sets will be created, 
including a training set, validation set, and testing set, with each set including corresponding visible, thermal, 
and fused images for positive cases (i.e., with potholes) and corresponding annotations. 

Secondly, based on the labeled images, deep learning algorithms (Mask R-CNN and RTFNet) will be trained 
to classify the images as with or without potholes and also for those with potholes further identify the pothole 
through detection and segmentation. Data augmentation (including flip, rotation, and shifting) will first be 
applied to increase the size of the training sets. To address the requirement of large, annotated image datasets 
by deep convolution neural network, transfer learning will be used, where deep convolution neural network 
pre-trained on other existing large-scale image datasets will be fine-tuned through the collected images 
(Gopalakrishnan et al. 2017). This way the required number of labeled images can be reduced. Different deep 
learning algorithms will be investigated. The performance of the trained candidate deep neural networks will 
be compared in terms of accuracy and efficiency. The impacts of additionally incorporating thermal and fused 
images for pothole detection and segmentation on the pothole detection performance will be investigated. The 
results will provide guidance on how to best make use of images from different sensors. 

Third, develop automated tools for pothole detection, pothole mapping and updating. The established deep 
neural network models with the best performance will be used for automated pothole detection when new 
images are collected and need to be processed. The location and picture of the potholes will be shown on 
maps using the GPS information for the images. Functionality of the tool, in terms of detection of the pothole 
and marking the potholes by their location, will be provided to facilitate prioritization of pavement 
maintenance. 
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Figure 1.3 Overview of the proposed research 

 
 Organization of Report 

This report is organized as follow: In Chapter 2, deep learning algorithms are introduced for pothole detection. 
Chapter 3 proposes three methods for pothole detection with the fusion of visible and thermal images. Chapter 
4 introduces the procedure of establishing the proposed dataset. Chapter 5 explains the results of proposed 
methods. In chapter 6, the development of the automated pothole detection tool will be provided. Finally, 
conclusions and future directions are provided in Chapter 7.
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2. POTHOLE DETECTION WITH MACHINE LEARNING 

This chapter provides an overview of some commonly used machine learning (ML) algorithms for object 
detection and pothole detection. 

2.1 Overview of Convolutional Neural Network (CNN) 

Machine learning algorithm for object detection is typically divided into two categories: Convolutional Neural 
Networks (CNN) and Region-based Convolutional Neural Networks (R-CNN). A typical CNN is mainly used 
for image classification. However, it cannot tell the position of the detection object in the image. R-CNN is 
based on CNN combined with region proposal while using the Selective Search (SS) method to extract the 
features of candidate regions, thereby achieving the goal of target detection and regional positioning. This 
section provides a brief overview of CNN and R-CNN. 

2.1.1 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is the simplest and most widely used deep learning method in image 
detection and classification (Alzubaidi et al. 2021). Figure 2.1 shows the procedure of CNN. CNN is 
composed of three parts: convolutional layers, pooling layers, and fully-connected layers. The convolutional 
layer can be considered as a filter that can extract image features and then use the pooling layer to reduce 
image dimension. It can not only increase the training speed but also avoid overfitting. The result is eventually 
generated by the fully connected layer. Different from simply using full images for computation, CNN has the 
ability to find characteristics of candidate images and focus on analyzing interested areas, which can 
enormously improve computing efficiency and accuracy. Convolutional neural networks have been used in 
many scenarios in recent years, such as image classification, voice recognition and face recognition (Albawi 
et al. 2017). 

 
Figure 2.1 The procedure of the Convolutional Neural Network (CNN) 
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2.1.2 Region-based Convolutional Neural Networks (R-CNN) 

The Region-based Convolutional Neural Network (R-CNN) was proposed by Girshick, et al. (2014). Different 
from CNN, R-CNN first uses the Selective Search method to generate thousands of region proposals and 
substitutes those regions into the original convolutional neural network after crop and warp instead of 
substituting each region proposal respectively (Girshick, et al. 2014). Note the Selective Search is an 
algorithm to locate possible objects with boxes in different scales. Refer to the Selective Search paper 
(Uijlings, et al. 2013) for more details. 

 
Figure 2.2 The architecture of Fast R-CNN 

 
However, proposing thousands of regions by only R-CNN and bringing them into the CNN operation at once 
are time-consuming processes. Hence, the Fast R-CNN method was proposed by Girshick (2015) to address      
shortcomings of R-CNN. Figure 2.2 shows the image-processing procedure of the Fast R-CNN. The main 
difference from the R-CNN is the Fast R-CNN inputs entire images into CNN, extracts feature maps as 
regions of interest (RoIs) and maps the corresponding region proposal to output feature maps. Then, RoI 
pooling is used to convert the RoI area into a feature map with fixed and integer edges to facilitate the 
segmentation of the region proposal. At the end of Fast R-CNN, the Softmax loss will be applied for 
classifying and calculating the probability and outputting the corresponding bounding boxes (Girshick 2015). 
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Figure 2.3 The architecture of Faster R-CNN 

Though the Fast R-CNN includes the concept of RoI, both R-CNN and Fast R-CNN are still using a Selective 
Search method to extract region proposals before passing to the convolution layers, which still spends too 
much time on image processing. Therefore, new object detection algorithms, Faster R-CNN, were proposed 
by Ren, et al. (2015). Figure 2.3 shows the architecture of the Faster R-CNN. Instead of randomly creating 
RoI regions before convolution layers, Faster R-CNN extracts RoI regions directly from feature maps by 
generating different sizes of anchor boxes through the Region Proposal Network (RPN), which is designed for 
predicting object bounds and objectness scores at each position simultaneously. Ultimately, similar to Fast R-
CNN, the RoI pooling layers are applied for reshaping the predicted region proposals. It helps the network 
classify objects and predict offset values of the bounding box in the Fully Connected layers. In Faster R-CNN, 
the speed of generating RoI is accelerated because of replacement of the Selective Search by RPN. 

2.2  Mask Regions with Convolutional Neural Network (Mask R-CNN) 

The results from Faster R-CNN are only predictions with boundary boxed. There is no object mask created 
from the previous R-CNN we introduced earlier. Therefore, the Mask Regions with Convolutional Neural 
Network (Mask R-CNN) was proposed by He, et al. (2017). Figure 2.4 shows the architecture of Mask R-
CNN. As can be seen, the architecture of Mask R-CNN is similar to that of the Faster R-CNN but with an 
additional branch for instance segmentation. The image features after RoI Align will go through the additional 
fully convolutional network for instance segmentation. In this section, we discuss the two major parts that 
differ from the Faster R-CNN: Feature Pyramid Network (FPN) and RoI Align. 
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Figure 2.4 The architecture of Mask R-CNN 
 

2.2.1 Feature Pyramid Network (FPN) 

The regular feature pyramid uses only the last layer of feature maps for object prediction. It is widely used in 
image recognition models, such as ImageNet and most of the CNN structural models. However, its 
shortcoming is that it is hard to detect small objects due to the low resolution of the feature map in the last 
layer, resulting in predictions with low accuracy. Hence, to make complete usage of the feature maps from 
CNN output and to preserve or enhance each feature in the pyramid, the Feature Pyramid Network (FPN)      
was proposed (Lin et al. 2017)), which became the main feature extractor in Mask R-CNN. Figure 2.5 shows 
how FPN processes feature maps. FPN first upsamples in the top-down pathway to coarse feature map.      
Then, the FPN leverages the information of small objects passed from top to bottom to increase the feature 
resolution for small objects. The FPN fuses the feature maps from the bottom layer to the higher layer in the 
fully convolutional method, so the features in each stage can be thoroughly extracted. 

Figure 2.5 The data flow of Feature Pyramid Network. Feature maps are indicated by blue outlines and 
thicker outlines denote semantically stronger features (Lin et al. 2017) 
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2.2.2 RoI Align 

The role of RoI pooling is to pool the corresponding region into a fixed-size bin in the feature map according 
to the position coordinates of the preselected box for subsequent classification and regression. In the process 
of RoI pooling, the boundary of the bin will be converted into an integer, so the position of the prediction will 
deviate from the actual classification, which is called "Misalignment" (He et al. 2017). 

 

Figure 2.6 RoIAlign samples the float coordinate (He et al. 2017) 

 

To keep floating numbers instead of converting them into integers to solve the problem of deviation from RoI 
pooling, He, et al. (2017) proposed RoI Align, which is a method of regional feature aggregation proposed in 
the Mask R-CNN. It has improved accuracy of the detection model by replacing the RoI pooling in the 
previous R-CNN model. Shown as Fig. 2.6, the solid lines represent RoI while dashed lines show a feature 
map. Four dots are sampling points in each bin. Instead of using quantization, RoI Align uses Bilinear 
Interpolation to calculate the value of four sampling points from the feature map. Finally, the result of RoI 
Align can be obtained by max pooling four sampling points in each bin. 

2.3 Pothole Detection Using Deep Machine Learning 

In the context of pothole detection, with recent advances in deep learning, several methods have been 
proposed and used for pothole detection and localization. Kulkarni, et al. (2014) proposed a pothole detection 
system with a neural network technique using the Accelerometer Sensor of Android smartphone and the GPS 
information for detecting and plotting the pothole. They named this system "Encog" which can obtain an 
accuracy of 95%. Song, et al. (2018) proposed a CNN method with the utilization of Inception V3 and 
Transfer Learning to detect potholes. The model can correctly recognize all instances of pothole. Maeda, et al. 
(2018) leveraged a deep learning model to train on a self-developed dataset, which was divided into nine 
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categories according to different types of road damage. The dataset has been published as Road Damage 
Dataset (RDD- 2018), which contains road damage images from several different countries. With the use of 
the RDD-2018, Arya, et al. (2021) evaluated 16 deep neural network models trained with different 
combinations of datasets from different countries. This research showed the road damage detection model for 
a country can be trained with the dataset developed with the local data mixed with data from another country. 
Majidifard, et al. (2020) implemented two object detection models YOLO-v2 and Faster R-CNN for detecting 
potholes. They used the road damage datasets with a top-down view and a wide view of the pavement 
segment to train the deep learning network, with the aim of automated pavement rating. Arjapure & Kalbande 
(2021) implemented Mask R- CNN to detect and predict potholes and calculated their area. They achieved an 
accuracy of 90% for predicting the area of pothole. Fan, et al. (2019) presented a robust pothole detection 
algorithm based on stereo vision with the 3D road database. The algorithm utilized the difference of disparity 
maps between the modeled and the actual to detect potholes. By using this technique, they achieved a 
successful detection accuracy of 98.7% and overall pixel-level accuracy of 99.6%. Ahmed (2021) compared 
the performances of 10 CNN models for pothole detection including YOLOv5, YOLOR and Faster R-CNN. 
They achieved the highest precision of 91.9% from Faster R-CNN with the backbone of ResNet50 while the 
fastest prediction model from the Small YOLOv5. 

The above-mentioned works all use visible images for pothole detection. Recently, the self-built convolutional 
neural model for pothole detection based on thermal images had been established by Bhatia, et al. (2022).      
This is the first application of thermal images for pothole detection and they achieved the best accuracy of 
97.08%. Gupta et al. (2020) also used thermal images for pothole detection. By utilizing deep neural networks 
and bounding boxes, they proposed a novel method of pothole localization from thermal images. Their model 
is based on a modification of the ResNet50-RetinaNet model. Overall, they achieved a precision of 91.15%. 
Another model for pothole detection with thermal images was proposed by (Sathya & Saleena 2022), 
combining CNN and aquilla optimization (AO) algorithm. The model overcame limitations of CNN model 
and reduced the processing time of detection. The precision and recall obtained from this model are 96.6% 
and 97.2%, respectively. 

These literature reviews show deep learning algorithms have been gaining popularity in pothole detection 
using either visible images or thermal images with a good amount of accuracy and performance. However, 
there are some challenges that must be overcome. Most of the developed models have so far focused on using 
visible (RGB) images for the detection. However, when there is insufficient lighting or low contrast with 
surroundings (e.g., if it is dark or in poor weather conditions such as cloudy, rain, fog), the detection based on 
only visible images may not perform well. On the other hand, relying only on thermal images may potentially 
lead to low accuracy. While the fusion of both visible and thermal images shows promises, there is still a lot 
of research that must be done to fully explore and leverage the advantages of integrating information from 
both visible and thermal images to improve pothole detection. This research tries to combine information from 
visible and thermal images by image fusion algorithms to develop a pothole detection tool suitable for both 
daytime and nighttime conditions. 
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3. PROPOSED APPROACH FOR POTHOLE DETECTION USING 
VISIBLE & THERMAL IMAGES 

3.1 Introduction  

The aim of this research is to develop machine learning algorithms for accurate and robust pothole detection 
using both visible and thermal images through image fusion. However, from the previous chapter, we know       
the Mask R-CNN network uses visible images and does not include the image fusion algorithm. For this 
reason, we need to first fuse images independently before going through the Mask R-CNN process. Apart 
from adding a separate fusion algorithm, the development of the data-fused semantic segmentation model is 
also growing (e.g., MFNet (Ha, et al. 2017), FuseNet (Hazirbas, et al. 2017)). Essentially, it combines the 
fusion and segmentation processes to enable an end-to-end model structure. This section will first introduce an 
algorithm for image fusion known as Anisotropic Diffusion Fusion (ADF) to perform before the Mask R-     
CNN. This section will then introduce the RGB-Thermal Fusion Network (RTFNet), which is an end-to-     
end data-fused semantic segmentation model based on the fusion of visible and thermal images. In the end, we 
proposed three methods with different combinations of algorithms for pothole detection. Their performances 
will be evaluated later in Chapter 5. 

3.2 Image Fusion Algorithms 

3.2.1 Anisotropic Diffusion Fusion (ADF) 

Anisotropic Diffusion is a method that reduces noise and smooths the given images by using a partial 
differential equation (PDE) without reducing the presence of image features, such as edges and lines (Perona 
& Malik 1990). The equations of Anisotropic Diffusion of a grayscale image  It   is given as: 

𝐼𝐼𝑡𝑡+1(𝑥𝑥,𝑦𝑦) = 𝐼𝐼𝑡𝑡 + 𝑐𝑐𝑡𝑡(𝑥𝑥,𝑦𝑦) ⋅ 𝛻𝛻𝐼𝐼𝑡𝑡                                                         (3.1)  

𝑐𝑐𝑡𝑡(𝑥𝑥, 𝑦𝑦) = 𝑔𝑔(|𝛻𝛻𝐼𝐼𝑡𝑡(𝑥𝑥, 𝑦𝑦)|) = 1
1+(𝛻𝛻𝐼𝐼/𝐾𝐾)2                                                        (3.2) 

where ∇ is the gradient operator with respect to the space variables. ct (x, y) is the diffusion coefficient, which 
can simply be known as the rate of diffusion. K is a constant value to control the sensitivity to the boundaries. 
ct (x, y) equals to 1 when ∇It = 0. It can be also considered as there is an edge or boundary. Therefore, It will 
be diffused in Eq. (3.1); otherwise, the features will be kept in the original image while ct(x,y) equals to 0. 

Similar to the Gaussian blur, Anisotropic Diffusion has a diffusion coefficient. The difference is the 
coefficient in Gaussian blur is fixed and it will blur boundaries during the diffusion. In the Perona & Malik 
(1990) model, the diffusion coefficient is determined according to the boundary detection, so the edges in the 
input image can be preserved after diffusion. 

Based on the development of Anisotropic Diffusion, the Anisotropic Diffusion Fusion (ADF) method has 
been proposed for fusing visible and thermal images to get a new edge preserving image (Bavirisetti & Dhuli 
2015). Figure 3.1 illustrates the process of the ADF method. We usde the ADF method to extract the 
information of visible and thermal images into detail layers and base layers and then fused both images 
respectively. Images fuse with Karhunen-Loève Transform (KL-transform) in the detail layers fusion section, 
which can highlight the differences by eliminating the correlation between features of images. Images have 
been fused together with respective weights in the base layers fusion section. In the final part, detail layers and 
base layers are fused with a simple combination. 
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Figure 3.1 Illustration of Anisotropic Diffusion Fusion (Bavirisetti & Dhuli 2015) 
 

3.2.2 RGB-Thermal Fusion Network (RTFNet) 

RGB-Thermal Fusion Network (RTFNet) is a deep learning algorithm for semantic segmentation in urban 
scenes with the fusion of visible and thermal images (Sun et al. 2019). Similar to SegNet and MFNet, RTFNet 
adopted the encoder-decoder architecture, which can let the fusion and training process become an end-to-end 
process. The architecture of RTFNet is shown in Figure 3.2. The blue and yellow sections are the encoder and 
decoder, respectively. In the encoder part, both RGB and thermal images are encoded respectively, and 
feature maps are extracted from both images. Different from other image fusion networks, RTFNet applies 
ResNet to be the backbone of the feature extractor. However, the author removed the average pooling and the 
fully connected layers of ResNet not only to prevent excessive loss from the feature map but to reduce the 
input size to simplify computation. To reduce the resolution to simplify the extraction of the feature maps, a 
max pooling layer and four residual layers are sequentially employed as encoder layers following the initial 
block. In each encoder layer, feature maps extracted from the thermal image are fused into RGB features 
through element-wise summation and taken as input for the decoder. 

 

Figure 3.2 Illustration of the architecture of RGB-Thermal Fusion Network (RTFNet) (Sun et al. 2019) 
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The decoder section is used to recover the size of the images to make the predictions. Two Upception blocks 
are applied for adding up feature maps. There are five decoder layers employed in the decoder section, each 
decoder layer contains Upception block A and Upception block B, which can be considered as a block for 
add-up the input and the feature map element-wisely. In the final part of RTFNet, the Softmax layer is added 
for results predictions. 

3.2.3 RTFNet with Enhancement Parameters (EPs) 

The advantage of the RTFNet model is its capability to extract the features from visible and thermal images 
and fuse      that information in a deep neural network. However, the fused weight of the RGB and thermal 
images in the original RTFNet structure are both equal to 1. In some circumstances, the thermal or RGB 
image may be more informative than the other, and fusing images with the same weight under different cases 
may affect the detection results. For example, thermal images would be more informative for pothole features 
in the nighttime scenario. Giving higher weight to more informative images would benefit the detection.      
To adjust the level of importance of information in thermal images, we add five new parameters in every 
encoder layer in the RTFNet. We termed these parameters Enhancement Parameters (EPs) because they      
enhance features in thermal images. Figure 3.3 displays the information extracted from thermal images that 
will multiply by each EP to enhance the thermal feature maps respectively before fusing those into visible 
image feature maps. The RTFNet with enhancement parameters (EPs) we proposed here will later be used in 
the proposed methods for pothole detection. 

 

Figure 3.3 Adding Enhancement Parameters (EP) into the encoder of the RTFNet 
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3.3 Proposed Methods for Pothole Detection with Images Fusion 

This research uses the Mask R-CNN and the RTFNet for pothole detection and segmentation. Three methods 
are proposed for accurate and robust pothole detection by building on and modifying the Mask R-CNN and 
the RTFNet. Figure 3.4 shows three proposed methods. The first method is the combination of the anisotropic 
diffusion fusion and the Mask R-CNN; the second method directly uses the RTFNet proposed by Sun, et al. 
(2019) for pothole detection; for the third method, we add a Bright-Dark detector we have developed into the 
RTFNet to determine which input must be enhanced for the thermal image by EPs. In this section, we will 
discuss in detail each method and the process of establishing the corresponding network. 

 

Figure 3.4 Three proposed methods for image fusion and pothole detection 
 

3.3.1 Method 1: ADF + Mask R-CNN 

Mask R-CNN is an instance segmentation framework for object classification and detection. However, image 
fusion is not included in this model. For this reason, we decided to fuse our inputs (i.e., visible and thermal 
images) with Anisotropic Diffusion Fusion (ADF) as a data preprocessing step. ADF is used because the 
characteristic of this fusion method is to emphasize and maximize the features from visible and thermal 
images. Details of ADF have been introduced in the previous section. After fusing the images, the visible and 
thermal images become a 3-channel RGB fused image. Then we utilize these processed images as input to the 
Mask R-CNN model for pothole detection. 
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3.3.2 Method 2:  RTFNet 

Different from Method 1, the RTFNet is already an end-to-end data-fuse network for semantic segmentation. 
The feature maps of visible and thermal images are fused by the element-wise summation and the semantic 
segmentation is used for pothole detection. Details of RTFNet have been introduced in the previous section. 

3.3.3 Method 3: Modified RTFNet with Bright-Dark Detector 

In Method 3, we added an enhancement parameter in each encoder layer in the RTFNet encoder to increase 
the ratio or weight of the information in thermal feature maps. More details on the enhancement can be found 
in the previous section. It is expected that for dark images, the enhancement of thermal features could be 
beneficial, while for bright images, there is less or no need to use the EPs to enhance the thermal features.      
To determine whether the EPs needed to be used in thermal feature maps, the brightness of the visible image 
was used as a reference. Hence, we developed a Bright-Dark detector to help determine the lightning 
condition of images. In the Bright-Dark detector, the RGB image was transformed into a grayscale image. 
Pixels in the image were converted to numbers from 0 to 225. We defined that pixels with numbers below 40 
would be considered dark pixels. Last, we calculated the percentage of dark pixels in the whole image. If the 
percentage of dark pixels is higher than 0.75, we regarded this image as a dark image, otherwise as a bright 
image. In the dark image case, the corresponding thermal feature maps will multiply by the corresponding EP 
in each encoder layer in the RTFNet to strengthen information of thermal images. In the bright image case, the 
EPs were set as 1, which essentially means there was no enhancement. 
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4. DATA COLLECTION, PRE-PROCESSING, AND AUGMENTATION 

 Introduction  

In this chapter, we will introduce the procedure for establishing the annotated fused image dataset, including 
the data collection, pre-processing, annotation, and augmentation. Figure 4.1 shows the workflow, and the 
details are presented in the following sections. The established dataset will be later used to train and compare 
the proposed pothole detection algorithms. 

 

Figure 4.1 Workflow to establish the annotated fused image dataset 
 

  Data Collection 

In this research, we used the FLIR ONE Pro LT thermal camera to collect our data. The FLIR one camera has 
the capability to capture both visible and thermal images with the same angle, which helps avoid the process 
of aligning both images. The FLIR camera can connect to a smartphone, and the captured images will 
automatically synchronize to the cloud drive. The visible and thermal images are merged by multi-spectral 
dynamic (MSX) technology through the FLIR ONE mobile app. 
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Figure 4.2 FLIR thermal camera setup 

The FLIR ONE camera was connected to a smartphone attached to the rear windshield by using the suction 
cup and smartphone holder (shown in Figure 4.2). Instead of attaching to the front windshield, attaching it to 
the rear windshield can prevent the camera from being blocked by the front of the car. To make sure both 
visible and thermal images were obtained well, we attached the smartphone outside the car to avoid the 
windshield blocking the conduction of thermal infrared. When the proposed algorithm was deployed, we 
expect this setup would enable efficient collection of images for large number of roads and over large 
distances as well. 

To establish a comprehensive dataset that includes different circumstances/conditions, the dataset had been 
collected in three conditions: daytime, cloudy, and nighttime. The samples of visible and thermal images in 
three conditions are shown in Figure 4.3. This dataset consisted of 224 daytime images, 222 nighttime images 
and 232 cloudy images. 
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Figure 4.3 Samples of visible images (left column) and thermal images (right column) in three 

different conditions. (a) daytime, (b) cloudy, (c) nighttime 
 

 Data Pre-processing and Annotation 

The resolution of visible images and thermal images captured from FLIR one camera was 1440x1080 and 
640x480, respectively. The area of thermal image is the center part of visible image. An illustration of 
overlapping both images is shown in Fig 4.4. Therefore, we first needed to crop the pixels around the visible 
image to match the size of the thermal image. Second, the images’ size must be a multiple of 64 to satisfy the 
limitation of dataset in the Mask R-CNN model. Therefore, we resized visible images and thermal images to 
640x448 with the least impact on the image scale. 



19 

 

 
Figure 4.4 Thermal image overlay on visible image to illustrate differences between both areas 

 
Because we used supervised machine learning as our network, the images had to be annotated manually to 
relate potholes with the ground truth. We did the image annotation and the JSON format by using LabelMe, 
which is an open-source software available on GitHub. For this research, a pothole is the only class that has 
been marked. Figure 4.5 shows two annotated sample images, and both one pothole and muti-potholes in a 
single image are acceptable. Instead of labeling by a rectangular box, we used polygons to enable the dataset 
to distinguish features between potholes and backgrounds properly. 

 
Figure 4.5 Visible images annotation using LabelMe, (a) single pothole, (b) multi-potholes 

 
 Data Fuse and Merge 

To ensure the visible and thermal images are transformed in the same way during augmentations, we needed      
process the images differently for the three methods. In Method 1, we implemented ADF to fuse images 
before training the Mask R-CNN. Figure 4.6 shows the workflow of the data processing in the first method. 
The characteristic features of visible and thermal images, such as edges, are emphasized by the ADF, and the 
image became a 3-channel fused image; 3-channel images from ADF will be the training data for the Mask R-
CNN. 
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Figure 4.6 The dataset fusion process for Method 1 

Figure 4.7 shows the data processing for the RTFNet. A 3-channel visible image and a 1-channel grayscale 
thermal image were merged into a 4-channel image. The first three layers of a 4-channel image are from a 
visible image while the last layer is from a thermal image. This dataset could be used in our proposed Method 
2 and Method 3. 

 
Figure 4.7 The dataset fusion process for methods 2 and 3 

 
 Data Augmentation 

The original dataset a total of 678 images in the daytime, nighttime and cloudy conditions. However, the 
dataset was not sufficient to get the best results in model training because the limited size could lead to over-
fitting. Thus, data augmentations through image transformations were implemented to increase the size of our 
dataset before training the ML models. The transformations included the combination of augmentations of 
left-right flip, up-down flip, random rotation with a probability of 0.5, and random shifting of 0.5. Examples 
of images augmented and used in the training model are shown in Figure 4.8. After the data augmentation, we 
increased our dataset to 1,200 daytime images, 1,200 cloudy images, and 1,160 nighttime images. Table 4.1 
shows the numbers of images in the collected dataset before and after augmentations in the daytime, cloudy 
and nighttime scenarios. 
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Figure 4.8 The samples of data augmentations. (a) original image, (b) left-right flip, (c) rotation 

 
Table 4.1 The numbers of images in three different conditions before and after image augmentation 

 Daytime  Cloudy  Nighttime  Total 
Before augmentation 224  222  232  678 

fter augmentation 1,200  1,200  1,160  3,560 
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5. TRAINING, VALIDATION, AND COMPARISON OF PROPOSED 
POTHOLE DETECTION METHODS 

 Algorithm Environment Setup  

In this experiment, TensorFlow and PyTorch were used as the main frameworks in the Mask R-CNN and 
RTFNet, respectively. All experiments ran on the same equipment with the following hardware and software 
configurations: 

1. CPU: AMD Ryzen 7 1700X (8-core) 

2. GPU: NVIDIA GeForce RTX 3060 (12GB) 

3. Compiled language: 

• Mask-RCNN: Python 3.6 with TensorFlow 1.15.0 and Keras 2.4.3 

• RTFNet: Python 3.8 with PyTorch 1.11.0, CUDA 11.3.0 and cuDNN 7.0 libraries 

 Performance Evaluation Metrics 

5.2.1 Introduction 

Too evaluate the performances of machine learning algorithms for classification, the Confusion Matrix is 
commonly used to present the situation between the true state and model prediction. Table 5.1 shows four 
different combinations of actual and predicted values in the Confusion Matrix. 

Table 5.1 Confusion Matrix 

  Predicted Values 

  Positive Negative 

A
ct

ua
l Positive 

TP FN 

Negative 
FP TN 
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In the Confusion Matrix, TP (True Positive) represents actual positive samples predicted as positive samples, 
FP (False Positive) represents actual negative samples predicted as positive samples, FN (False Negative) 
represents actual positive samples predicted as negative samples, and TN (True Negative) represents actual 
negative samples predicted as negative samples. In our research, the predicted samples were thousands of 
region proposals generated by Selective Search. The overlap between actual object area and the generated 
region proposal      was the standard for obtaining each part of the Confusion Matrix, which is known as 
Intersection over Union (IoU). Figure 5.1 illustrates the idea of IoU, which is a ratio that specifies the amount 
of overlap between the ground truth and predicted bounding box defined as Eq. (5.1). In our research, the red 
box represents the actual pothole we labeled, while the blue box is one of the region proposals generated by 
the Region Proposal Network (RPN). It commonly measures the ground truth with an IoU threshold of 0.5. If 
the IoU is larger than the threshold, the detection would be considered as TP, otherwise as FP. 

 

Figure 5.1 Illustration of Intersection over Union (IoU) 
 
 

𝐼𝐼𝑜𝑜𝑜𝑜 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝐴𝐴𝐴𝐴𝑂𝑂𝐴𝐴𝑂𝑂
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑜𝑜𝑈𝑈

= 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                                      (5.1) 
 

5.2.2 Performance Evaluation Metrics  

Precision and recall are two commonly used metrics to evaluate the performance of machine learning 
algorithms. They are defined with the following equations: 

𝑃𝑃𝑃𝑃𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐~(𝑃𝑃) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                                             (5.2) 

𝑅𝑅𝑒𝑒𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅~(𝑅𝑅) = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                                              (5.3) 

The precision is the ratio of true positives to all predicted positives. In our research, the precision for each 
image is a percentage of the region proposals that we properly identified the potholes out of all region 
proposals in the image. The recall is a measurement of the model’s ability to accurately identify the true 
positives. Take our research for example, for all the images with potholes in our dataset, the recall represents 
the percentage correctly identified as having potholes. Thus, the higher the recall, the higher the probability of 
predicting the actual pothole. 
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In general, the purpose of training a model is to maximize both precision and recall. However, it is difficult to 
compare the performances of models when the precision and recall conflict. For example, we cannot tell 
which model is the best if the precision of model A is higher than that of model B while the recall of model B 
is higher than that of model A. Therefore, the idea of the F1-score is to provide a sensitive indicator regarded 
as the harmonic mean of precision and recall. On the other hand, the F1-score can also be used as a composite 
metric to determine the performance of the model. A higher F1 score represents a better performance of the 
model. Eq. (5.4) is the definition of F1-score: 

𝐹𝐹1 = 2 × 𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒𝑈𝑈𝑒𝑒𝑈𝑈𝑜𝑜𝑈𝑈×𝑅𝑅𝐴𝐴𝑒𝑒𝐴𝐴𝑂𝑂𝑂𝑂
𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒𝑈𝑈𝑒𝑒𝑈𝑈𝑜𝑜𝑈𝑈+𝑅𝑅𝐴𝐴𝑒𝑒𝐴𝐴𝑂𝑂𝑂𝑂

                                                         (5.4) 

 Model Training and Testing  

5.3.1 Training Details  

We conducted the training, validation, and testing with our collected dataset. We randomly divided the dataset 
into a training set, validation set, and testing set with a ratio of 7:2:1. Therefore, the training dataset      
included 2,492 images, while the validation dataset included 712 images. Table 5.2 shows the number of 
images in each of the three datasets. 

Table 5.2 Numbers of images in training, validation, and testing dataset 
 Daytime  Cloudy  Nighttime  Total  % 

Training 840  840  812  2,492  70 
Validation 240  240  232  712  20 
Testing 120  120  116  356  10 
Total 1,200  1,200  1,160  3,560  100 

In Method 1, we trained the Mask R-CNN model with a batch size of 4. The initial learning rate was set to 
0.001 with a learning rate decay of 0.0001. In Method 2, we trained the RTFNet with a batch size of 2 
(maximum batch size within the memory of our GPU). The starting learning rate was set to 0.01 with a 
learning rate decay of 0.0005, which is referring to the original RTFNet. In Method 3, we reduced the learning 
rate to 0.005 with a learning rate decay of 0.0005 to decrease the magnitude of the convergence to avoid 
gradient explosion. In all methods, the training datasets were shuffled before each epoch. Last, the training of 
the models stops when the loss has converged. 

5.3.2 Transfer Learning  

Transfer learning was utilized in all models in this research to improve the training speed and performance. 
Using this method, the pre-trained weights from the previous tasks could be reused in related works, and those 
weights provided a good starting point for training the machine learning models. 

In the Mask R-CNN, we used the pre-trained weights based on the COCO dataset. The COCO dataset was 
created with the goal of image recognition. It included 80 categories (person, cars, etc) with over 200,000 
images of the total 330,000 images labeled. In the RTFNet, we referred to the transfer learning method from 
Sun, et al. (2019). Likewise, we also used transfer learning in the RTFNet. The pre-trained weight we used to 
train the model is the weight of ResNet provided by PyTorch, which refer to the Sun et al. (2019) paper. 

  



25 

 

 Detection Results and Comparison 

5.4.1 Overall Results 

First, we trained the model using full dataset (including daytime, cloudy, and nighttime), and tested the 
performance of this model in each condition. Table 5.3 shows the precision, recall, and F1-score of this model 
performed in daytime, cloudy and nighttime conditions. We tested the Mask-RCNN model only trained with 
visible images to compare the performances with/without thermal image fusion. We named it RGB in the 
table to represent that this model is trained by using only visible images of the dataset. ADF in this table 
represents the results from our proposed Method 1 (Mask R-CNN+ADF), while RTFNet represents the results 
from proposed Method 2. 

Table 5.3 Performance comparison of three types of models in three scenarios (%) 

 Daytime Cloudy Nighttime 
 RGB ADF RTFNet RGB ADF RTFNet RGB ADF RTFNet 

 
Precision (P) 

 
95.0 

 
75.4 

 
97.3 

 
81.4 

 
72.7 

 
96.8 

 
51.7 

 
88.8 

 
96.5 

Recall (R) 92.5 71.7 94.3 75.5 70.0 90.5 85.0 88.3 63.2 
F1-score 93.7 73.5 95.8 78.3 71.3 93.6 64.3 88.5 76.3 

For daytime images, we achieved better performances from RGB and RTFNet than those from ADF. It is 
mainly because the visible images in the daytime already had enough information for accurate pothole 
detection. On the other hand, for ADF the redundant fusion of visible and thermal images could blur and 
increase noises of the pothole features. For RTFNet, the model is originally designed end-to-end for object 
detection, even though image fusion happened for daytime images, the RTFNet could still find the optimal 
results. 

For cloudy images, the performances from RGB and ADF are worse than those from RTFNet. It is because 
puddles caused by non-potholes could be mistaken as potholes, and also emphasize the importance of non-
pothole boundaries in the RGB and ADF, thereby affecting the prediction. 

For nighttime images, thermal images provided more information than visible images. The ADF can enhance 
features from thermal images more than visible images because only thermal images provide information 
about pothole edges in the nighttime. However, because of the equal fusion weights of visible and thermal 
images in Method 2, the fusion of the less informative visible images led to low recall, which means the 
potholes in nighttime were hard to recognize. Therefore, the ADF performed the best in the nighttime with the 
highest F1-score because the ADF method can preserve the pothole edge information of thermal images. 

Figure 5.2 shows sample results for RGB, ADF, and RTFNet in different scenarios. Column 1 shows images 
in daytime condition. The result shows the potholes could not be detected completely using ADF. In addition, 
the masks covered more fully of the potholes in RTFNet than others. Column 2 shows a sample in cloudy 
condition. Closer potholes could be predicted in all models. However, only RTFNet could identify potholes 
far from the camera (e.g., those located close to edges of the image) and be masked completely. Column 3 
displays the samples in the nighttime condition. There are actually two potholes in this sample. The potholes 
can be detected in both ADF and RTFNet, while the performance of ADF is more accurate in this sample. 
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Figure 5.2 (a) Visible images, (b) Thermal images, (c) RGB, (d) ADF, (e) RTFNet 
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5.4.2 RTFNet + Constant EPs 

According to the results above, we found RTFNet was more suitable for relatively bright scenarios than other 
models. The reason is the weights for visible and thermal images in the RTFNet are the same, so the 
importance of the thermal features could not be highlighted in the nighttime. Therefore, a major problem of 
the RTFNet is how to determine the best enhancement parameters (EP) to optimally emphasize the features in 
the thermal images. To evaluate the impact of different levels of enhancement on performance of the RTFNet 
model, we tested different values for the EPs. In this case, for an already trained RTFNet, we directly set the 
EPs for all the encoder layers in RTFNet as the same constant, while keeping other weights in the RTFNet 
unchanged. Then we used the model to do predictions. So, in this case, there was no training or retraining 
involved. Note we only tested for the nighttime condition. 

Table 5.4 Impact of different level of enhancement (i.e., different EP values) on the performances 
of RTFNet under nighttime condition (%). Note that the RTFNet is trained under EP=1 

 EP = 1  EP = 1.5  EP = 2  EP = 2.2 
Precision (P) 96.8  90.2  80.2  77.3 
Recall (R) 66.7  71.4  77.5  76.5 
F1-score 78.9  79.7  78.8  76.9 

Table 5.4 shows the testing results. The F1-score performs the best when EPs = 1.5. As EPs increase beyond 
1.5, the F1-score was getting worse. Figure 5.3 displays the sample results with different EPs. When EPs=1, 
some area of the pothole can be predicted. The prediction of the pothole became clear and complete when 
increasing EPs up to 1.5. However, the thermal image was over-emphasized when continuously increasing 
EPs. The edge of predictions became rougher, and the locations of pothole became inaccurate      as well     . 

Therefore, these initial investigations showed the values of EPs in the RTFNet could affect the prediction 
performance, and it is important to select optimal EPs in the RTFNet to optimally enhance the thermal 
features to improve the performance of the RTFNet in pothole detection. 

5.4.3 RTFNet Trained with Constant EPs 

In the previous case, the weights used in the RTFNet model were essentially trained for EPs=1 (i.e., without 
any enhancement). The performance variations for different EPs may be because we did not use the 
corresponding optimal weights for different EPs. Therefore, to gain more insights on how the EPs affect the 
performance of the RTFNet model, we considered another case. In this case, we first set the EP values, and 
then trained the model to find the corresponding optimal weights for other parameters in the RTFNet model      
and used the established model for prediction. Here, we trained the RTFNet with EPs equal to the constant of 
1, 1.2, and 1.5 to test which EPs were the best for the nighttime scenario. In addition, we trained two RTFNet 
models. One was only changing the EP in the first encoder layer while keeping EPs at other layers as 1. The 
other was setting the EPs in all encoder layers as the same constant (i.e., 1, 1.2, 1.5). The reason for this was 
to observe whether the latter would over-enhance the thermal images. During the training process, we used 
Bright-Dark detector to classify the bright and dark images. If the detector determined the training data as the 
dark images (e.g., nighttime image), then constant EPs would be involved; otherwise, all EPs would be set to 
1. 

Table 5.5 shows the results. The overall performances of changing EPs in all layers are better than only 
changing EP in the first layer. When looking at the case of EP=1.5, the improvement in recall is particularly 
significant. Figure 5.4 shows some sample pothole detection results. In visible images, the light dims from left 
column to right column. The predictions in case (b) are more accurate than in case (a). The dimmer the light, 
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the more significant the difference in prediction completeness between (a) and (b), which can more clearly 
show that the recall of case (b) is higher than that of case (a). 

 
Figure 5.3 Sample results in nighttime for RTFNet with different EPs (a) EPs=1, (b) EPs=1.5, 

(c) EPs=2, (d) EPs=2.2 
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Table 5.5 Impact of different levels of enhancement (i.e., different EP values) on the performances of  
RTFNet under nighttime condition (%). Note that the RTFNet is trained under corresponding EPs 

  First layer    All layers  
EP = 1 EP = 1.2 EP = 1.5  EP = 1 EP = 1.2 EP = 1.5 

Precision (P) 96.3 95.8 95.7  96.3 92.7 83.3 
Recall (R) 71.2 70.8 63.1  71.2 76.5 79.9 
F1-score 81.9 81.5 76.1  81.9 83.8 81.6 

 
Figure 5.4 Sample results in nighttime for RTFNet, shown for the EP=1.2. (a) EP=1.2 in the first layer,  

(b) EP=1.2 in all layers 
 

5.4.4 RTFNet Trained with Variable EPs for Each Layer 

Based on the results from previous sections, if the pothole detection only focuses on the nighttime scenario, 
the following insights can be obtained: 

1. Adding EPs to enhance the thermal feature for nighttime images can positively affect the prediction 
of potholes. 

2. Training the RTFNet model with their corresponding EPs can increase the recall, which means it is 
easier to detect the presence of potholes. 

3. It seems that the optimal value for EPs is somewhere between 1 to 1.5 for considering EPs in all 
encoder layers in the RTFNet. 
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To find the optimal EPs, we changed EPs from constants to trainable variables for each encoder layer. That is, 
we include the EPs as parameters/weights that will be trained together with other weights in the model. Figure 
5.5 shows the graph of convergence process of each EP. The subscript number represents the encoder layer. 
We initially set the start point at 1.5 because the previous results showed the best range of EPs might be from 
1 to 1.5. However, it seems all five EPs are still converging when they reached 1.3 after initial training, so we 
reset the start point at 1.3 to run more steps to eventually establish the converged values. The Bright-Dark 
detector was used the same way as it was used when training the model with constant EPs, that is, EPs would 
return to 1 when the Bright-Night detector regarded the training data as the bright image, otherwise, the EPs 
would continuously keep training until convergence. 

We also trained a model containing trainable EP using only the nighttime dataset trying to train the best model 
for the nighttime scenario. The convergence trend of EPs is shown in Figure 5.6. The final EPs trained with 
the full dataset and nighttime dataset are listed in Table 5.6. Overall, the EP values are roughly around 1.1 
with some variations between the different layers. 

 
Figure 5.5 Convergence of EP values trained with the full dataset 
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Figure 5.6 Convergence of EP values trained with the nighttime dataset 

 
Table 5.6 The results of trainable EPs 

- EP1 EP2 EP3 EP4 EP5 
Train with full dataset 1.092 1.137 1.124 1.085 1.131 
Train with nighttime dataset 1.116 1.086 1.043 1.113 1.119 

Table 5.7 shows the performances of RTFNet trained with variable EPs. There were two cases: one trained 
with the full dataset, and the other trained with only nighttime dataset. In the case of training with full dataset, 
the model achieved a better balance of precision and recall than those models with constant EPs in three 
scenarios. In the case of training with only the nighttime dataset, the model achieved the highest precision of 
94.7% and recall of 87.4% in the nighttime scenario. However, this model is not suitable for use in the 
daytime and cloudy conditions. 

Figure 5.7 shows the comparison of EPs being constants 1.2 in all encoder layers and EPs being trainable 
variables. The thermal images are more informative than the visible images in these samples. We found 
potholes in these samples could be completely predicted and fully masked when EPs were trainable variables. 
In comparison, some potholes cannot be detected and marked out when EPs are the constants of 1.2. 
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Table 5.7 Performances of RTFNet trained with variable EPs (%) 
 

 Trained with full dataset  Trained with nighttime dataset 
 Daytime  Cloudy  Nighttime  Daytime  Cloudy  Nighttime 

Precision (P) 90.0  87.8  83.0  91.6  60.4  94.7 
Recall (R) 84.0  79.2  84.0  56.7  50.9  87.4 
F1-score 86.9  83.3  83.5  70.1  55.3  90.9 

 
Figure 5.7 Sample results in the nighttime condition for RTFNet trained with 2 cases, (a) EPs=1.2 
trained with full dataset in all layers, (b) EPs trained/optimized with nighttime dataset in all layers 

 
 Summary of Results 

We experimented with three proposed methods and compared their performance in different scenarios. 
Overall, the RTFNet takes advantage of the end-to-end process of image fusion and object segmentation so 
that the model can optimize based on the information from visible and thermal images. Compare to Method 1, 
the ADF and Mask R-CNN is two independent algorithms so the modification and application of the 
subsequent model will not be as good as RTFNet. Besides, we used a Bright-Dark detector to split the dataset 
into bright and dark images based on the lighting condition — this can help RTFNet find the optimal weight 
in every lighting condition for pothole detection. It is worth noting we used trainable EPs to enhance thermal 
features in dark scenario, which was proved to significantly improve the model’s performance at nighttime, 
according to experiments. 

In summary, we decided to use the RTFNet as the model of the pothole detection tool. We also added the 
Bright-Dark detector to classify input images as a basis for using EPs. We will introduce the tool in detail in 
the next chapter. 
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6. DEVELOP AUTOMATED TOOLS FOR POTHOLE DETECTION 
AND MAPPING 

6.1 Introduction  

 

Figure 6.1 The procedure of the developed pothole detection and mapping tool 

After obtaining the training models in the previous chapter, we developed a pothole detection and mapping 
tool with a graphical user interface (GUI) based on the RTFNet model to automatically and robustly detect 
potholes by fusing visible and thermal images to prioritize road maintenance. Figure 6.1 shows the procedure 
of the developed pothole detection tool. The procedure is divided into three main parts: Pre-processing, 
Pothole detection using RTFNet model, and Mapping. This chapter will discuss in detail the process of the 
detection and mapping of potholes with the developed tool. 

6.2 Inputting Data 

Figure 6.2 shows the graphical user interface of the developed tool. The inputs are the folder/path of the 
candidate images and the file path of the GPX file created from the GPS collector. For input images, they      
were directly captured by the FLIR Visible-Thermal camera with visible and thermal sensor data embedded in 
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the JPG metadata. As for the GPS, because the FLIR camera doesn’t have the ability to update the coordinates 
of images while shooting in different locations, the GPS collector, which can record the coordinates, dates and 
times,      must be turned on when collecting pothole images. 

 
Figure 6.2 The graphical user interface of the developed pothole detection tool 

A GPX file is a GPS data file saved in the GPS Exchange format, containing position data in longitude and 
latitude and time data. GPX file is an open standard used by many GPS programs, so it is acceptable to use, 
regardless of the type of third-party GPS collector. It is noteworthy that the times in the GPX file are in 
Universal Coordinated Time (UTC), which unified the standard of the recording of time. Therefore, the date 
and time in the GPX file need to be converted to the corresponding location of input images. For example, the 
time has to be minus      seven hours to correspond to the Denver time zone, where our data is collected. 

After inputting the folder path of images, the file path of the GPX file, the path you want to store the detecting 
and mapping results, and adjusting the UTC-time offset based on the location of the input collection, then one 
can simply click the "Run" button to start the detection process. 

6.3 Pre-processing Process 

When the display bar shows "Processing" on the top of the interface, it means the detection has started. In the 
pre-processing part, we standardized the image pre-processing process used for establishing the training 
dataset. The size of images will be resized to 640x448 to correspond to the default size of the training dataset. 
Because the input images from the FLIR camera are JPG files with thermal sensor data embedded, we needed 
to extract thermal information and divide it into 3-channel visible and 1-channel thermal images by the FLIR 
Image Extractor. The names of the visible and thermal images were renamed according to the date and time 
they were taken plus the UTC-time offset, so the shooting time of the images could be easily matched with the 
corresponding coordinates in the mapping part. In the final step of pre-processing process, the extracted 
visible and thermal images were merged into 4-channel images as the input to the RTFNet model. 
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6.4 RTFNet Detection 

Before inputting 4-channel candidate images into the RTFNet, the Bright-Dark detector is added to 
distinguish bright or dark conditions and divide the images into two groups. The differentiation of bright and 
dark images is according to the brightness of the visible images. The detection of bright and dark images      
were separated because the best weight (and hence the best model) for each condition is different. First, the 
RTFNet processes bright images with the weight trained by Method 2 because the F1-score of this weight      
was around 95% for daytime pothole detection. This process would be skipped if there is no input detected as 
bright images. Next, the RTFNet processed the dark images with the weight established from training with 
only the nighttime dataset in Method 3. The reason is that the F1-score of this weight was around 90% and      
was the best performance compared to other methods. The trained Enhanced Parameters (EPs) was involved 
in five encoder layers of the RTFNet to emphasize the feature of thermal images. The values of EPs in each 
layer were the converged ones shown in Table 5.6. Similarly, this process would be skipped automatically if 
there is no dark image. After the detection process by the RTFNet, only images with detected potholes      
were masked and saved as the detection results. 

6.5 Mapping 

The FLIR mobile app has the function of recording the image’s shooting time and coordinates. However, we 
found it can only record the coordinate of the first image. In other words, the app cannot update the coordinate 
when the camera is moving. Thus, we used the “Gaia GPS,” a third-party mobile app that simultaneously 
records the times and coordinates when using the FLIR camera. Other GPS recorders that have the ability to 
export the GPX file can also be used.  Because we renamed the input images by their own shooting time in the 
pre-processing phase, we could easily match the detected results with their shooting time from the GPX file 
and match them with the corresponding coordinates. 

We used the Folium python package to map the detected potholes. The output is an HTML file, the standard 
markup language for documents designed to be displayed in a web browser, stored in the result path that      
had been inputted at the beginning. Figure 6.3 displays the mapping results with ± 16 ft GPS accuracy. The 
GPS accuracy depended on the performance of the GPS recorder. The higher the refresh rate was, the higher 
the resolution will be. The locations of the detected potholes were marked with blue pins. Moreover, the 
detected pothole image showed up when clicking on the pin. 

6.6 Applications and Limitations 

This tool can be used to facilitate pothole detection and pothole mapping for highway maintenance. The 
candidate images are directly obtained from the FLIR ONE camera without any additional operations. For the 
GPX file, it can be generated from any GPS recorder because it is a typical format for recording the 
coordinate and date/time information. Besides, this tool not only can detect potholes in bright conditions but 
also in insufficient lighting conditions. Being able to detect potholes even in conditions with insufficient 
lighting can be very useful for pavement maintenance. For example, because of the traffic during the daytime, 
many times the pavement maintenance is carried out during the nighttime. This tool has the ability to detect 
potholes in the dark scenario, so it can also work in the nighttime or in general low lighting conditions to 
facilitate road maintenance. 
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When implementing the tool, there are several aspects to keep in mind. First, depending on how the camera is 
mounted and the camera angle, some of the potholes may be difficult to detect. For example, potholes 
captured close to the edge of the images may show up as small potholes with a distorted shape because of the 
view angle. We believe that this can be solved by collecting more data and doing the data augmentation with 
perspective transformation to consider more pothole shapes and types and account for the view angle. Second, 
because of the fixed frame rate of the FLIR ONE camera (five images per second for our data collection), 
some road segments may be missed (e.g., no images collected) if driving too fast, while driving too slow may 
lead to multiple images for the same road segment or pothole (which may lead to overestimation of the 
number of potholes, since the same pothole may show up in multiple images). We think this problem can be 
solved by accounting for the relationship between the vehicle speed and camera frame rate to achieve the best 
coverage of road surface and proper identification of the correct number of potholes. 
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Figure 6.3 Sample result of mapping the detected potholes 
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7. CONCLUSIONS AND FUTURE DIRECTIONS 

 Summary 

In this report, the overall objective was to utilize machine learning algorithms for the automated and robust 
detection of potholes and develop a pothole detection and mapping tool that can be used to help prioritize 
highway maintenance. 

Chapter 2 provided an overview of some of the commonly used machine learning (ML) algorithms for 
objective detection and pothole detection. First, convolutional neural networks (CNN) and region-based 
convolutional neural networks (R-CNN) are reviewed. Aspects related to the structure of CNN and R-CNN, 
the evolution of R-CNN models, and the critical elements in the Mask R-CNN. In addition, this chapter      
provided literature reviews on the use of machine learning algorithms in pothole detection. Through the 
descriptions, we highlighted improvements from fast R-CNN to Faster R-CNN and the additional primary 
function to differentiate the faster R-CNN and Mask R-CNN. The Mask R-CNN algorithm was chosen in this 
research for pothole detection and segmentation. 

Chapter 3 presented the three methods we proposed for pothole detection by fusing visible and thermal 
images. First, we introduced the structure and principle of Anisotropic Diffusion Fusion (ADF), which is an 
image fusion method for emphasizing the feature maps (e.g., edges, lines). We fused our dataset with ADF 
before running the Mask R-CNN model, and we regarded this as our proposed Method 1. Moreover, we 
introduced the RGB-Thermal Fusion Network (RTFNet), which is an end-to-end fusion and segmentation 
encoder-decoder model. Utilization of the RTFNet is our proposed Method 2. In Method 3, we explicitly 
introduced the enhancement parameters (EPs) in the encoder of the RTFNet to enhance the thermal feature 
maps. Meanwhile, we developed a Bright-Dark detector to distinguish whether the input images are in the 
daytime or nighttime. Then, depending on it is daytime or nighttime, the corresponding RTFNet will be used 
for pothole detection. 

Chapter 4 introduced the procedures for establishing the annotated fused image dataset. The procedures 
included data collection, data pre-processing, data annotations, and data augmentations. The image fusion 
processes would vary, depending on the requirements of the three methods we proposed in Chapter 3. 

Chapter 5 presented the training processes and compared the performances of the three proposed methods. 
The dataset was split into training, validation, and testing datasets. We trained models for each method where 
transfer learning was used to speed up the training process and improve the training efficiency. We evaluated 
the performance of each model with the F1-score and selected the one with better performance as the 
backbone of the pothole detection and mapping tool we developed. 

Chapter 6 introduced the function, procedure, and usage of the developed pothole detection and mapping tool. 
Based on performance investigations in Chapter 5, the RTFNet and RTFNet with EPs were selected as the 
backbone models of this tool. A graphical user interface (GUI) for the tool was also developed. The GUI 
made the tool easier and more intuitive to use. The output from the tool was a map marked with the locations 
of detected potholes. Also, the photo with masked potholes shows when clicking the location icon on the map. 
The map could help maintenance team to visualize where the potholes are and to manage/plan the repair of the 
potholes. 
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 Conclusion 

Through this research, a unique dataset consisting of trios of visible, thermal and fused images are established. 
Three methods are proposed for pothole detection using image fusion. Through comparing the performances 
of the three proposed methods, comprehensive insights were obtained on the impact of thermal images on 
pothole detection. Overall, it was found that fusing thermal images can help improve the pothole detection 
performance of the ML algorithms, especially in the nighttime scenario. We were able to get the F1-score 
value of 93% in the daytime scenario with the use of the Mask R-CNN and the highest F1-score value of 
88.5% in the nighttime with the Mask R-CNN + ADF model. However, we got the best performance of the 
F1-score value of 95.8% and 93.6% with the RTFNet in the daytime and cloudy, respectively. In addition, we 
introduced five new variables, Enhancement Parameters (EPs), to the five encoder layers in the RTFNet to 
emphasize/enhance the features of thermal images, especially in the nighttime. Eventually, we got the best F1-
score value of 90.9% by the modified RTFNet when focused on only the nighttime images. 

An automated pothole detection and mapping tool with graphical user interface was developed. The inputs to 
the tool were candidate images, which can be directly imported from the FLIR One visible and thermal 
camera, and the GPX file, which can store the time and GPS records. In addition, the Bright-Dark detector 
was developed and integrated in the overall algorithm. The Bright-Dark detector can recognize the daytime or 
nighttime scenarios of the candidate images. The daytime images were predicted with the original RTFNet, 
while the nighttime images were predicted with the RTFNet with EPs. The output is a map with locations of 
the detected potholes. When clicking on the pin on the map, the pothole image with mask will show up. 

 Future Directions 

In the development of pothole detection by visible and thermal image fusion and the mapping tool, there are 
some key recommendations that can be considered for future research work. 

1. Due to the lack of potholes on Fort Collins’ roads and highways, some pothole images in our 
proposed dataset were collected from the parking lot. The difference of environment conditions 
between highway images and parking lot images may impact the detection accuracy. For example, 
traffic light and signs appear on highways while parking lots do not. Because the tool we developed is 
to help highway maintenance, the pothole data can be collected only on highways in the future to 
focus on the highway scenario. 

2. In this research, we collected daytime, cloudy, and nighttime data for model training. However, the 
temperature difference between potholes and road surfaces may vary depending on the 
weather/season. Future research may look into the influence of thermal image fusion on model 
prediction accuracy at varying temperature differences. 

3. The computation of the pothole area had been done in the work by Arjapure & Kalbande (2021). The 
method they used was to calculate the error or deviation of the number of pixels between the 
predicted pothole area and the actual pothole area. This method can be combined with our developed 
pothole detection and mapping tool to obtain more detailed pothole information (e.g., size, shape, 
area, depth, etc.) for highway maintenance. 
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