
REAL-TIME 
IMPLEMENTATION 
COMPARISON OF URBAN 
ECO-DRIVING CONTROLS

MPC 24-558 | A. Rabinowitz, C. Ang, Y. Mahmoud, F. Araghi, R. Meyer
 I. Kolmanovsky, Z. Asher, and T.H. Bradley

A University Transportation Center sponsored by the U.S. Department of Transportation serving the
Mountain-Plains Region. Consortium members:

Colorado State University University of Colorado Denver Utah State University
North Dakota State University University of Denver University of Wyoming
South Dakota State University University of Utah 



  

 

 
                  

 

  

 

 
                   

Technical Report Documentation Page 
1. Report No. 

MPC-570 

2. Government Accession No. 
 

3. Recipient's Catalog No. 
 

4. Title and Subtitle 

Real-Time Implementation Comparison of Urban Eco-Driving Controls 

5. Report Date 

September 2024 
6.  Performing Organization Code 
 

7. Author(s) 
Aaron I. Rabinowitz, Chon Chia Ang, Yara Hazem Mahmoud, 
Farhang Motallebi Araghi, Richard T. Meyer, Ilya Kolmanovsky, 
Zachary D. Asher, Thomas H. Bradley

8. Performing Organization Report No. 

MPC 24-558 

9. Performing Organization Name and Address 

Colorado State University 
Department of Systems Engineering 
6029 Campus Delivery 
Fort Collins, CO 80523-6029

10. Work Unit No. (TRAIS) 
 
11. Contract or Grant No. 

 

12. Sponsoring Agency Name and Address 

Mountain-Plains Consortium 
North Dakota State University 
PO Box 6050, Fargo, ND 58108 

13. Type of Report and Period Covered 

Final Report 

14. Sponsoring Agency Code 

 
15. Supplementary Notes 

Supported by a grant from the US DOT, University Transportation Centers Program 

16. Abstract 

Connected autonomous vehicle (CAV) technology has the potential to enable significant gains in 
energy economy (EE). Much research attention has been focused on autonomous eco-driving control 
enabled by various methods. In this study, the state of the literature on autonomous eco-driving control 
is reviewed, an overall system’s description of eco-driving control for a CAV is provided, and 
representative methods are evaluated comparatively against each other in simulation. Simulations are 
conducted using real-world traffic signal data and a validated future automotive systems technology 
simulator (FASTSim) model. Results indicate that an EE improvement in the range of 5%–15% is 
attainable depending on the method and cost function used. This article shows that dynamic 
programming (DP) methods are most effective in improving EE but are significantly more 
computationally expensive than other methods. The genetic algorithm (GA) methods are shown to 
present the most potential in terms of EE improvement and run-time. Results also indicate that 
velocity-sensitive cost functions allow all the methods to perform better than pure acceleration 
minimization.  

17. Key Word 

advanced traffic management systems, connected 
vehicles, fuel consumption, infrastructure, intelligent 
vehicles, lagrangian functions, sensors, sustainable 
transportation, trajectory, vehicle safety, velocity 

18. Distribution Statement 

Public distribution 

19. Security Classif. (of this report) 
Unclassified 

20. Security Classif. (of this page) 
Unclassified 

21. No. of Pages 
37 

22. Price 
n/a 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 



Real-Time Implementation Comparison of Urban Eco-Driving Controls 

 

 

 

 

 

 

 

 

Aaron I. Rabinowitz, Graduate Research Assistant 
Colorado State University 

Chon Chia Ang, Graduate Research Assistant 
Colorado State University 

Yara Hazem Mahmoud, Graduate Research Assistant 
Western Michigan University 

Kalamazoo MI 

Farhang Motallebi Araghi, Graduate Research Assistant 
Western Michigan University 

Kalamazoo MI 

Richard T. Meyer, Associate Professor 
Western Michigan University 

 Kalamazoo MI 

Ilya Kolmanovsky, Professor 
University of Michigan 

Ann Arbor, MI 

Zachary D. Asher, Associate Professor 
Western Michigan University 

Kalamazoo MI 

Thomas H. Bradley, Professor 
Colorado State University 

Department of Systems Engineering 
6029 Campus Delivery 

Fort Collins, CO 80523-6029 

September 2024 



ii 

 

Acknowledgements 

This work was supported in part by the U.S. Department of Energy under Grant DE-EE0008468; and in 
part by the Colorado State University and the Mountain-Plains Consortium, a University Transportation 
Center funded by the U.S. Department of Transportation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Disclaimer 

“The contents of this report reflect the views of the authors, who are responsible for the facts and the 
accuracy of the information presented. This document is disseminated under the sponsorship of the 
Department of Transportation, University Transportation Centers Program, in the interest of information 
exchange. The U.S. Government assumes no liability for the contents or use thereof.” 

North Dakota State University does not discriminate in its programs and activities on the basis of age, color, gender expression/identity, genetic 
information, marital status, national origin, participation in lawful off-campus activity, physical or mental disability, pregnancy, public assistance status, 
race, religion, sex, sexual orientation, spousal relationship to current employee, or veteran status, as applicable. Direct inquiries to Vice Provost, Title 
IX/ADA Coordinator, Old Main 100, (701) 231-7708, ndsu.eoaa@ndsu.edu. 

mailto:ndsu.eoaa@ndsu.edu


iii 

 

ABSTRACT 

Connected autonomous vehicle (CAV) technology has the potential to enable significant gains in energy 
economy (EE). Much research attention has been focused on autonomous eco-driving control enabled by 
various methods. In this study, the state of the literature on autonomous eco-driving control is reviewed, 
an overall system’s description of eco-driving control for a CAV is provided, and representative methods 
are evaluated comparatively against each other in simulation. Simulations are conducted using real-world 
traffic signal data and a validated future automotive systems technology simulator (FASTSim) model. 
Results indicate that an EE improvement in the range of 5%–15% is attainable depending on the method 
and cost function used. This article shows that dynamic programming (DP) methods are most effective in 
improving EE but are significantly more computationally expensive than other methods. The genetic 
algorithm (GA) methods are shown to present the most potential in terms of EE improvement and run-
time. Results also indicate that velocity-sensitive cost functions allow all the methods to perform better 
than pure acceleration minimization. 
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EXECUTIVE SUMMARY1

This report investigates the efforts to enhance vehicle energy efficiency (EE) and reduce greenhouse gas 
(GHG) emissions from road vehicles, as driven by climate change concerns and energy costs. It examines 
the transition from traditional internal combustion engines to hybrid and battery electric vehicles (BEVs) 
and how these technologies promise further GHG reductions. The study focuses on eco-driving strategies, 
particularly the effectiveness of autonomous eco-driving, which can be implemented more easily and at 
scale compared with manual strategies, thereby circumventing driver training issues. 

A key part of the report is a comprehensive comparative study that addresses the lack of such analysis in 
existing literature. This study summarizes eco-driving control strategies, sets up a framework for 
comparing solver methods, and evaluates these methods using real-world data. The literature review 
categorizes methods into rule-based and optimal, with optimal further divided into globally optimal 
methods and locally optimal methods. It discusses the advantages of autonomous eco-driving over 
manual strategies, including precision, scalability, and driver acceptance. 

The report’s methodology involves a detailed review of the literature, system definition, and analysis of 
eco-driving subsystems, including perception, planning, and the plant subsystem. It explains the 
computational models used for simulations and compares various control methods such as rule-based eco-
driving, discretized control optimization, and polynomial trajectory optimization. 

The results section details the effectiveness of each method in terms of EE improvement and 
computational load, highlighting that while globally optimal solutions (like those from dynamic 
programming) offer the highest potential for EE improvement, they are computationally expensive. 
Genetic algorithms (GAs) emerge as a promising real-time method that strikes a balance between EE 
improvement and computational feasibility. 

The report concludes that autonomous eco-driving control can significantly enhance vehicle EE with a 
potential national impact on energy savings if widely adopted. It recommends the use of a GA method 
with a road power cost function as the best trade-off for generating optimal eco-driving traces for urban 
BEVs. 

This paper was previously published as Rabinowitz, et al., “Real-time implementation comparison of 
Urban EcoDriving Controls.” In IEEE Transactions on Control Systems Technology, Vol 32, no. 1 pp 143-
157, 2024 

 

 

 

 
1 Executive summary generated using OpenAI. (2024). ChatGPT (Feb 7 version) [Large language model]. 
https://chat.openai.com/chat 
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1. INTRODUCTION 

In response to rising concerns over climate change and energy costs, a significant portion of automotive 
development effort has gone into the reduction in energy use and greenhouse gas (GHG) emissions from 
road vehicles. Over time, vehicles have become significantly more efficient in terms of both energy 
economy (EE) and GHG emissions/mi [1], [2] under pressure from environmental regulations from the 
U.S. Environmental Protection Agency (EPA) and its global equivalents, which exert ongoing pressure on 
original equipment manufacturers (OEMs) to continue this effort [3]. To improve vehicular energy 
efficiency, traditional internal combustion engine (ICE) powertrains have incorporated electric motors and 
evolved into hybrid electric vehicles and battery electric vehicles (BEVs), [4] which promise further GHG 
reductions per vehicle [5]. Regardless of powertrain technology and regardless of methods of power 
generation, the pressure to reduce vehicular energy consumption will continue to be present. 

Vehicle energy efficiency is also subject to modes of operation. Eco-driving is a strategy designed to 
reduce fuel consumption by minimizing accelerations and unnecessary braking events. Eco-driving is 
well known and has been shown to be effective when used by human drivers [6]. As an example, eco-
driving is taught as a part of drivers’ education in Singapore and has resulted in an EE improvement of 
11% to 15% there [7]. Differences in culture, infrastructure, and available technology will play a major 
role in determining the effectiveness of efforts to promote manual eco-driving. Vehicular autonomy and 
connected autonomous vehicle (CAV) technology provide a more general opportunity for the application 
of eco-driving strategies because they circumvent driver acceptance/training issues. When compared with 
a human driver (i.e., manual eco-driving), a CAV has the ability to follow optimal trajectories precisely 
and can consider information that is beyond line-of-sight. 

Compared with manual eco-driving, autonomous eco-driving yields the following potential benefits: 

1) ability to precisely follow optimal energy traces 
2) ability to account for traffic information that is beyond line-of-sight 
3) ease and scalability of implementation  
4) improved driver/passenger acceptance 

A great variety of solutions for autonomous eco-driving control have been put forward in the literature. 
This diversity is due to the complicated nature of the problem and the many dimensional design spaces 
that results from it. To the author’s knowledge, no comprehensive, comparative study exists. This study 
attempts to address this research gap by summarizing and subdividing eco-driving control strategies, 
defining a framework for comparative implementation of solver methods, implementing a selection of 
common methods, and evaluating these methods in terms of performance and practicality using real-
world data [8]. The current state of the literature is discussed in Section 2. A system and subsystem 
overview for an assumed eco-driving CAV is provided in Sections 3–6. The results are presented in 
Section 7 and conclusions in Section 8. 
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2. LITERATURE REVIEW 

Much research exists in the area of autonomous eco-driving controls. In conducting the literature review, 
the authors were particularly interested in publications that proposed methods which might be 
implemented in real time. A real-time control was defined as one that was explicitly or could be 
implemented in a receding-horizon setting. Such a control should be able to execute multiple times per 
second. 

The authors propose that the methods reviewed may be categorized by purpose and structure as follows. 
First, a division can be made into the categories of rule-based and optimal methods. The rule-based 
methods provide simple and computationally light algorithms for computing target speed on an 
instantaneous basis. The rule-based methods often mimic the heuristics that human drivers follow when 
attempting to minimize energy consumption such as lighter accelerations and longer following distances. 
In contrast, optimal methods attempt to find a minimum energy consumption trace for a given time or 
distance horizon. Optimal methods thus require information about future conditions even if this is done 
purely with assumptions. Within the set of optimal methods, one can further subdivide into globally 
optimal and locally optimal methods. The globally optimal methods find the control that results in the 
global minimum energy consumption. For the globally optimal methods, function dictates form, and all 
the methods proposed are variants of dynamic programming (DP). The locally optimal methods find a 
control trace more efficient than one that could be attained by a rule-based method but require less 
computational time than the globally optimal methods. The locally optimal methods often involve 
transcribing the problem into the time domain and performing trajectory optimization. As will be seen in 
Section 7, local optima will often resemble the global optimum far more closely than a rule-based method 
solution. The authors propose a taxonomy based on groupings in form and function which divides 
methods into the following categories: rule-based eco-driving (RBED), discretized control optimization 
(DCO), and polynomial trajectory optimization (PTO). 

2.1 Rule-Based Eco-Driving 

RBED is a subset of autonomous eco-driving control wherein a vehicle reduces its energy consumption 
through a set of predefined rules, which are functions of vehicle states. Because of their feedforward 
nature, the RBED methods are relatively simple to implement. Compared with normal human driving 
behavior, the RBED methods are capable of yielding considerable fuel economy improvement [9], [10]. A 
common RBED algorithm is an intelligent driver model (IDM) [11] with several works presenting 
modified versions of the method in eco-driving simulations [12], [13], [14], [15]. Although non-IDM 
RBED methods appear in [16], [17], and [18], IDM and its derivatives dominate the RBED literature and 
are often used as a comparison point in optimal eco-driving literature. When implemented on a sufficient 
percentage of vehicles, the RBED methods have shown promise in traffic calming [12], [19]. RBED 
control has also been extended to cooperative and centralized fleet control schemes [13], [14]. 

2.2 Discretized Control Optimization 

The purpose of a DCO method is to compute optimal controls for a vehicle at a set of discrete points in 
time or distance. The DCO methods require a state transition model and information about future 
exogenous inputs. The DCO category primarily consists of the DP and reinforcement learning (RL) 
methods. 

The DP [20], [21] is a well-known mathematical optimization method that produces globally optimal 
solutions to control problems subject to a chosen discretization. A realization of the DP-derived optimal 
solution depends on whether the chosen discretization and the model appropriately match the real-world 
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application. To account for constraints in position and speed inherent to autonomous eco-driving control, 
both must be problem states. The control in the autonomous eco-driving problem is acceleration or a 
related control such as throttling. Such a two-state one-control DP algorithm, presented in [22] and [23], 
minimizes fuel consumption while navigating around traffic signals. Hellström et al. [24] present a two-
state one-control DP algorithm for heavy-duty trucks in highway conditions. Both methods must execute 
at a low rate and serve to set targets for a lower level controller. The primary issue with the DP methods 
for real-time implementation is that run-times scale exponentially with the number of states and controls. 
This scaling issue is often referred to as the “curse of dimensionality.” In the autonomous eco-driving 
literature, DP solutions proposed as real-time controls use suboptimal implementations of DP to avoid the 
issue. The DP methods are also often proposed as a high-level control algorithm, executing at low 
frequency, which serves to set targets for a low-level controller. It is most common to see DP 
implemented as a comparison point for the performance of another proposed solution with the caveat that 
the DP solution is not a candidate for real-time implementation. 

Suboptimal implementations of DP are found in [25], [26], [27], and [28]. Maamria et al. [25] and [26] 
overcome the run-time scaling issues by removing position as a problem state. This is accomplished by 
adding a tunable constant cost to the running cost to ensure that the correct final distance is reached at the 
correct time. This tunable parameter must be found via numerical root-finding. Overall, this method can 
be thought of as a pseudo two-state DP (2SDP) method. The pseudo two-state method was found to 
execute in less time than an equivalent 2SDP method, which emphasizes the importance of the run-time 
scaling effects inherent to DP. A major limitation with [25] and [26] is that having removed the position 
state, it is not possible for the optimization to account for traffic signals in fixed positions, making the 
method less applicable for urban eco-driving. Deshpande et al. [27] propose an approximate DP (ADP) 
solver for traffic-signal constrained driving, which uses a non-optimal rollout method to approximate the 
cost-to-go. Deshpande et al. [27] account for traffic signals by determining whether it is feasible to pass in 
a “go” phase or, if not, implementing eco-approach and eco-departure. Gupta et al. [28] propose a method 
by which precomputed DP solutions may be adjusted to account for perturbations in external inputs 
without having to recompute the DP solution, thus reducing the required frequency of DP method 
evaluations for real-time control. In all the cases, global optimality is traded for reductions in run-time. 

Vahidi and Sciarretta [29], Stanger and del Re [30], Xu and Peng [31], Groelke et al. [32], Bae et al. [33], 
and Sun et al. [34] propose a DP-based method where the DP solution is computed at a low frequency and 
is used as a target by a lower level controller. Exemplary of the type is [35], which uses vehicle to 
infrastructure (V2I) information and DP to set velocity targets for a cruise control system for urban 
driving. This method was tested both in hardware in loop (HIL) simulation and on-road and was shown to 
produce a 30% EE improvement at a cost of an 8% increase in travel time. 

The RL-based methods are proposed in [36], [37], and [38]. Lee et al. [36] use RL for optimizing motor 
power control for an electric vehicle subject to road grade but not traffic. The RL control was found to 
perform nearly as well as DP for the same problem. The algorithms seen in [37] and [38] are focused on 
comfort (reduction in jerk) and collision avoidance rather than eco-driving, and also found similar 
performance to equivalent DP solutions with lower run-time. Ultimately, RL suffers from the same 
disadvantages that DP does for the application: the long run-time required to compute the strategy but not 
to the same extent. 

2.3 Polynomial Trajectory Optimization 

The optimal eco-driving optimal control problem can also be solved as a trajectory optimization problem 
by transcribing into the time domain. Direct transcription transforms the problem into an n-dimensional 
optimization with the number of dimensions set by the level of discretization but at lower levels of 
discretization. Run-time for the trajectory optimization will scale with dimensionality depending on the 
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solver used. At very high levels of discretization, linear interpolation can be used between trajectory 
points. To reduce run-time, a coarser discretization may be used but this will necessitate polynomial 
interpolation between the optimization points. Because every segment of an interpolation polynomial is a 
function of multiple knot points, using an interpolation polynomial comes at the cost of introducing 
nonlinearity into the problem. The PTO methods may use bounded nonlinear solvers such as interior-
point optimization (IPOPT), sequential least-squares programming (SLSQP), or metaheuristics. 

PTO is commonly used for motion planning in robotics [39]. Nonlinear bounded solvers are used to 
perform PTO for autonomous eco-driving in [40], [41], and [42]. A comparison to DP is provided in [43] 
for the related optimal energy management problem where the PTO method, using a nonlinear bounded 
solver, was able to approximate the globally optimal solution and to produce a solution in orders of 
magnitude in less time than DP.  The constraints of the optimal eco-driving problem are difficult for 
bounded nonlinear solvers to deal with. The issue is that vehicle motion is subject to time-varying 
constraints in position caused by other vehicles and traffic signals, as well as the speed of other vehicles 
and speed limits. These constraints will be discussed in Section 4. The combination of nonlinearity caused 
by interpolation polynomials and the complexity of the constraints makes the computation of meaningful 
gradients difficult, and thus, gradient-based solvers could struggle. Hamednia et al. [40], Khalik et al. 
[41], and Padilla et al. [42] do not consider distance and speed constraints simultaneously. The issues that 
gradient-based solvers experience are somewhat mitigated in [44], in which best interpolation splines 
[45], [46] are used rather than interpolation polynomials. Best interpolation splines consider each segment 
separately and can be used to guarantee that constraints will not be violated, but this is at the cost of 
additional run-time. 

Metaheuristics are also commonly used as solvers for PTO methods with genetic algorithm (GA) and 
particle swarm optimization (PSO) methods being the most often proposed. GA and PSO take inspiration 
from nature. PSO [47] takes inspiration from animals that exhibit schooling or swarming behaviors. PSO 
works by generating a field of candidate solutions (particles) and then computing gradients for each 
particle based on individual and global best discovered solutions. GA [48], [49], [50] mimics natural 
selection by encoding decision variables for a discretized problem into phenotypes and then mating the 
highest fitness phenotypes over many successive iterations. GA can be modified in many ways, such as 
introducing random mutation, elitist selection, and others to change the breadth of the search. Where PSO 
is still at its core a gradient descent method, GA is not and therefore not subject to the difficulties that 
gradient descent methods face with the optimal eco-driving problem. 

GA was used in [51] to generate optimal driving operations from real-world data with the final results 
yielding an improved fuel economy of 22% compared with the initial population. Similarly, Li et al. [52] 
used GA to group vehicles in compatible streams to provide a smoother traffic flow with the algorithm 
scaling favorably in comparison to DP. In recent studies [53], [54], [55], GA PTO methods were applied 
to both conventional and electric vehicles with results showing favorable fuel economy improvement for 
both types of vehicles. PSO was used in various studies to optimize energy consumption for individual 
vehicles [52], [56], [57], [58] and to streamline vehicle platoon behavior at intersections [59]. A 
comparison of PSO-based PTO methods with DP [58] found that PSO significantly underperformed DP in 
terms of efficiency but executed in significantly less time. PSO and GA have also been used in 
combination, and the combined method was shown to be more effective than individually [52], [57]. 

  



   

   

  

 
 

 

  

 
  

  

5 

 

Table 2.1 Publications Reviewed by Method Type 

 

  

The general consensus in the literature would be that PTO methods provide the opportunity to compute 
locally optimal solutions in substantially less time than a globally optimal solution could be computed 
using DP. The constraints used in much of the PTO literature were simplifications of what the authors 
would consider the minimum constraints for optimal eco-driving in urban conditions. The complex 
boundaries inherent to the optimal eco-driving problem are difficult for gradient-based solvers to account 
for and are, perhaps, easier for metaheuristics to account for. However, the use of GA or PSO comes at the 
cost of introducing randomness to the problem. 

2.4 Summary 

The publications reviewed are listed by category and method type in Table 2.1. The literature contains a 
variety of approaches to the optimal eco-driving problem. There is significant variation in the constraints 
used in the studies surveyed. The distinction in constraints more or less reflects a division in focus 
between urban driving and other types of driving. Urban driving is constrained by the positions and 
velocities of surrounding vehicles as well as traffic signal locations and states. The constraints present in 
urban driving are time-varying. Inevitably, the constraints used will need to be approximate as precise 
knowledge of future values is not possible. Because all the optimal eco-driving methods proposed are 
intended to be used in a receding-horizon manner, some simplification is acceptable. However, to make 
direct comparisons between methods, a standard and sufficiently representative set of constraints must be 
applied to all. 
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3. SYSTEM DEFINITION 

The eco-driving system can be broken down into three subsystems, as shown in Figure 3.1. This system-
level diagram is consistent with advanced vehicle control applications such as autonomous vehicles [60] 
and with energy efficiency improvement strategies such as optimal energy management [61]. The eco-
driving subsystems are, respectively, the perception subsystem, the planning subsystem, and the plant 
subsystem. 

 

  

Figure 3.1 Eco-driving system schematic 

The perception subsystem uses the sensors and connectivity capabilities of the ego vehicle and computes 
motion boundaries based on a detected lead vehicle (with on-board sensors and V2V) and upcoming 
traffic signal information (V2I). The proliferation of new vehicles equipped with a forward object 
detection system will soon reach 100% per an agreement between the National Highway Traffic Safety 
Administration (NHTSA) and automakers, which mandates the inclusion of said systems to enable 
automatic emergency braking as a standard feature [62]. These systems often comprise a radar and a 
visual object detection system, which work in concert to determine the location, motion, and type of 
objects in the ego vehicle’s forward vision cone. In addition to enabling safety-oriented features such as 
collision avoidance systems, the forward object detection system also enables convenience-oriented 
features such as adaptive cruise control. In the future, most vehicles may also be equipped with V2I 
technology in the form of a transponder, which communicates with infrastructure transponders according 
to the Society of Automotive Engineers (SAE) specification J2735 [63]. Among the messages contained 
in the SAE J2735 specifications are the SPaT and MAP messages, which provide the signal phase and 
timing and locations of the upcoming traffic signals. 

The vehicle is assumed to contain a two-level controller with a high-level controller computing an 
optimal eco-driving trace, and the low-level controller being responsible for carrying out the optimal eco-
driving trace in a safe manner. The planning subsystem, which is composed of the high-level controller, 
takes the information about lead vehicle motion, speed limit, and future traffic signal information and 
uses it to compute the optimal eco-driving trace. 

The final subsystem, the plant, is the ego vehicle (physical or simulated), which executes the optimal eco-
driving trace and outputs the resultant energy consumption. The subsystems and the manner in which they 
are treated in this study are explained in Sections 4–6. 
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4. SUBSYSTEM 1: PERCEPTION 

For the eco-driving control to be evaluated in a real-world context, the algorithms that generate the 
optimal eco-driving trace must be able to function using only information that is currently or will soon be 
available to CAVs. The information available to CAVs comes from the advanced driver assistance system 
(ADAS) system of the CAV and from V2I communication where available. The data, which are available 
to CAVs via their ADAS systems and V2I communication, are listed in Table 4.1 and further elaborated in 
[64]. 

Table 4.1 Data Available to CAVS 
   
   

   

   

   
 

 

 

With this information, a CAV can generate path constraints for the optimal eco-driving problem. For this 
study, path constraints consist of allowable locations (distances along the vehicle path) for the vehicle at 
specific times and allowable speeds for the vehicle at specific locations. 

4.1 Path Constraints 

The ego vehicle should not be deliberately programmed to violate traffic laws even if this provides 
efficiency and/or travel-time benefits [65]. This means that the vehicle should not exceed the speed limit, 
disobey traffic signals, or collide with any other vehicle. If the ego vehicle is the first vehicle in a queue, 
then an upper boundary can be generated from SPaT knowledge as an inequality constraint 

where x is the vehicle distance along its route, BU is the upper boundary which is a function of time, and T 
is the final time of the drive cycle. There are many ways to generate this upper boundary based on lead 
vehicle and traffic signal state. A general approach would be to formulate the upper boundary based on a 
piecewise function wherein the boundary is generated by the closer of the nearest stop phase and the 
immediate lead vehicle. For the purposes of this study, only vehicles with no immediate lead vehicle are 
considered (i.e., there are vehicles in front of the ego vehicle but always at least one signal away) as in 
such a case, a long-term optimal trajectory can be generated. 

An assumption made here is that waiting out a go phase while not moving, although potentially optimal 
for a single vehicle, will cause congestion and will not be fleet optimal. Thus, a lower bound on distance 
as a function of time is also defined as an inequality constraint 

where BL is a piecewise function of time based on the positions and phases of leading traffic signals. The 
upper and lower bounds combine to form a “corridor” on a phase map, as shown in Figure 4.1. 
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In limiting possible paths to those entirely within the corridor, the ego vehicle is limited to largely 
following traffic norms and is far less likely to radically affect normal traffic patterns. The selection of 
stop phases to define the boundaries is done using the IDM model, which is further described in Section 
5. 

 

 

Figure 4.1 Example of a “corridor” with upper and lower boundaries 

The IDM simulation is carried out for a given amount of time, and the upper bound is defined by the 
preceding phases of the traffic signals passed by the model vehicle, and the lower bound is defined by 
succeeding phases of the same signals. As the IDM model represents a baseline driver, the corridor 
created this way is one that must reflect normal driving and, thus, is useful for this purpose. Note that the 
boundaries created in this manner are nonconvex. 

Traffic signals are generally adaptive as they were in this specific case. In this study, full knowledge of 
traffic signal timing in the future is assumed. The effects of adaptive traffic signal timing may be dealt 
with through the implementation of stochastic constraints as in [34]. Uncertainty about the timing of 
traffic signals will have the effect of extending the stop phases as used in optimization and thus tightening 
the corridor. 

An element of reality is added to this study through the use of real-world SPaT data in the generation of 
path boundaries. These data were collected in 2019 and consist of traffic light phase and timing data from 
19 traffic signals along a four-mile route in downtown Fort Collins, CO. These data were collected by the 
authors and their collection is described in [66]. Several hours of SPaT data for each of the traffic signals 
were collected in collaboration with the Fort Collins Traffic Operations Center. From these data and the 
distances of the traffic signals along the route, a phase map was constructed. 

To conform to traffic norms and regulations, the ego vehicle velocity is required to satisfy the inequality 

where SL(t) is the road speed limit at time t. For the Fort Collins drive cycle used in this study, the speed 
limit for all roads at all times was 35 mi/h (15.65 m/s). 
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5. SUBSYSTEM 2: PLANNING 

The planning subsystem is responsible for calculating an optimal eco-driving trace based on the 
constraints computed by the perception subsystem. As described in Section 3, the planning system is 
assumed to contain a high-level controller, which computes optimal velocities, and a low-level controller, 

Table 5.1 Variables And Parameters For IDM 

 

 

which implements them. This study is only concerned with the high-level controller. It is also assumed 
that the high-level controller will operate with the shrinking horizon and the solution recomputed at 
discrete time instants. The optimal methods selected for implementation were DP, DCO, and PTO using 
IPOPT, GA, and PSO as solvers. IDM was used as the baseline control to compare against. These 
methods are defined in the following subsections. 

5.1 Baseline Control 

1) Intelligent Driver Model: IDM, developed by Trieber et al. [11] is an RBED method intended to enable 
agent-based traffic modeling. This model represented a step improvement in previous car-following 
models as it was meta-stable, prevented collisions, and all the parameters had physical interpretations. 
The IDM is formulated as follows with parameters described in Table 5.1: 

In this study, as mentioned previously, only the optimal trace for the lead vehicle is considered. Thus, the 
upper bound of the traffic light constraints is used in place of a lead vehicle with varying distances but 
always with zero speed. 
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IDM can represent a spectrum of drivers in terms of aggression in acceleration and following distance. 
Parameter selection for IDM is important as it affects the efficiency of the generated trace. Those 
parameters with the greatest effect on EE are a, b, and δ. An experiment was run on said parameters using 
100 different constraint sets per case and a future automotive systems technology simulator (FASTSim) 
[67] 2015 Kia Soul electric vehicle (EV) model. 

Table 5.2 EE Regression Results For IDM Parameters 
     
     

     
     
     
     
     
     
     

 
This experiment was a full-factorial design with the levels for a and b being 1, 5, and 9 m/s2 (this range 
encompassing virtually all the passenger vehicle accelerations [68], [69]), and the levels for δ being 2, 4, 
and 6. The EE results of this experiment were regressed onto the values for a, b, and δ and interaction 
terms, and the results are presented in Table 5.2. 

The results of the regression analysis indicated that a, b, and δ were significant terms, which negatively 
affected EE, while none of the interaction terms was significant. Thus, values for a, b, and δ can be set 
independently. Several papers propose methods for setting these values or the values themselves. In the 
literature, the default value for δ is given as 4 [11], [70], [71], [72]. NREL produced a report in 2021 [73], 
which extracted 39,000 individual driving features (acceleration-from-stop, deceleration-to-stop, and 
cruise events) from collected driving data and fitting IDM parameters to the data. Although the IDM 
model used by NREL is slightly differently formulated than in this article, the results are, nevertheless, 
informative. NREL found clusters for δ at 0.88, 1.40, 1.75, 2.13, and 4.78; ultimately, the article 
recommends a value of 4 for δ. Setting values for a and b was also based on literature where default 
values are generally given as 5 m/s2 for both. The authors adopted these established values. 

5.2 Optimal Control 

All the optimal control solver methods address the following problem: 

 

 

  

where 



11 

 

s.t. 

 

 

 

where ψ(S,U) is the running cost, Φ(S) the final state cost, S = [x,v]⊤ is the state vector containing the 
problem states’ position and velocity, S0 = [x0,v0]⊤ is the initial values of the state vector, U = [a] is the 
control vector containing the control acceleration, J is the cost for S and U, and BL and BU are the vectors 
containing the constraints as described in Section 4. The overline indicates a sequence of values at 
multiple discrete time intervals. The goal of the optimization∗ is to find the optimal eco-driving trace (U) 
such that the corresponding cost is equal to J∗. 

The cost J is evaluated in one of three ways. It is common in the literature for the cost function for an eco-
driving optimization to be entirely based on acceleration. The case for using an acceleration-based cost 
function is made in several papers [74], [75], [76]. Nevertheless, the authors chose to consider other, 
progressively less abstracted cost functions as well. The cost functions were also designed to enable fast 
computations for both long traces and for single time steps. The cost functions used are specified below. 

1) Cost Functions: 
a) Acceleration l2 norm (Al2N) cost function: The Al2N cost function is simply the square of the l2 

norm of acceleration sequence. It is given by 

Note that minimizing the l2 norm squared is equivalent (gives the same acceleration sequence) as 
minimizing the l2 norm but is computationally advantageous as it does not require the computation of 
square roots and dealing with non-smoothness at the origin. 

b) Road power cost (RPC) cost function: The RPC cost function is based on the road loads’ ABC 
formula [77] multiplied by velocity to return power. This cost function considers the impacts of viscous and 
aerodynamic drag in addition to acceleration, and it is given by 

where A, B, and C are the coefficients of the road loads’ equation, and m is the vehicle mass. For 
FASTSim vehicles, the road loads’ coefficients are not provided, and hence were chosen as A = 0, B = 
CRR, and C = ρFCD with CRR being the coefficient of rolling resistance, ρ being the density of air, F being 
the vehicle frontal area, and CD being the vehicle coefficient of aerodynamic drag. One of the important 
aspects of Al2N and RPC cost functions is their independence of powertrain model. An approach related 
to RPC has been studied in [78] under the name wheel power minimization. 

c) Battery power cost (BPC) cost function: The BPC cost function is an extension of the RPC cost 
function, which accounts for the efficiency of the motor/inverter based on power requirements. This 
calculation is a simplified facsimile of the FASTSim model and requires powertrain modeling details. The 
BPC cost is calculated as follows: 



12 

 

 

 

 

Figure 5.1 Comparison of cost function values for 2015 Kia Soul EV. Red polygon outlines the 
operational envelope of the UDDS, US06, and HWFET EPA dynamometer drive cycles 
and is shown as reference for common driving conditions 

The transmission efficiency term ηT is a constant, and the motor/inverter efficiency term ηM/I is calculated 
by interpolating using the FASTSim motor efficiency curve. Note that BPC requires more component-
specific information and interpolation and thus may be more difficult to implement and requires more 
computational time. 

d) Summary: The three different cost functions reflect three different approaches to optimizing EE. A 
comparison of the cost function values for a 2015 Kia Soul EV is shown in Figure 5.1. Note that the 
velocity-sensitive cost functions RPC and BPC have similar contour plots, but both differ significantly from 
the Al2N cost function. 

2) Optimizers: 
a) Two-state DP: DP is a well-known and commonly used optimal control method. The principal 

advantage of DP is that it guarantees a globally optimal solution subject to the chosen discretization. The 
primary disadvantage of DP is that it will generally require significantly greater computational time and 
effort than other methods and heuristics. In the case of eco-driving control, which is a two-state one-control 
nonlinear optimization problem with time-varying constraints, 2SDP is a natural choice and it appears in 
the literature in multiple forms, as described in Section 2. The dynamics of the problem in discrete time are 
represented by 
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The boundary violation cost function JPC is shown in (20), where the path constraints in x were enforced 
by a squared error penalty function. The boundary violation cost is added to the running cost ψ(Sk,Uk) at 
each time step 

 

 

 

 

where BL,k = BL(tk), BU,k = BU(tk), and SL,k = SL(tk). The final state cost function is 

where xtarget is the desired ending position, and βFS is a tuned parameter. 

b) Spline nonlinear programming (SNLP): A second common method to solve time-varying control 
problems is via direct transcription [79], wherein a problem in continuous time is transcribed to the time 
domain and solved at discreet times. Direct transcription (DT) significantly increases the dimensionality of 
a control problem but allows the use of efficient methods such as IPOPT and SLSQP for linear and nonlinear 
problems [80], [81], [82]. The dynamics of the problem are represented by 

The running cost and final state cost functions are the same as that for 2SDP and are shown in (20) and 
(21), respectively. 

An issue with using IPOPT to solve discrete time optimal control problems is that the run-time required 
scales exponentially with the length of the state vector [83]. To avoid using extremely high levels of 
discretization, it is common to use polynomial interpolation between more distant optimization points. 
The authors chose to define trajectories using piecewise cubic hermitic interpolation polynomial (PCHIP) 
splines with knots placed at those points in time where the upper or lower boundaries change. The 
trajectories are defined as 

where ϵ are the locations of the vehicle at the knot times (tknots) relative to the boundaries at the knot times 
(BL,knots  and BU,knots), and t is the discrete time vector for the problem. 

c) Spline GA (SGA): The first metaheuristic method discussed is the SGA. For this study, the 
phenotypes optimized are ϵ vectors. The initial population is generated randomly with an initial guess 
inserted in place of one randomly generated phenotype. The GA method uses sorted selection, wherein 
the best phenotypes are selected for crossover and random mutation, and wherein a certain percentage of 
the total chromosomes from all the phenotypes are changed to a random number at each step. The method 
also uses elitist carry-over, wherein the best phenotype is kept for the next step unchanged. The dynamics 
and cost function for SGA are identical to those for SNLP. GA is inherently parallelizable and scalable, 
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meaning that it is well-suited to modern parallel computing and may benefit significantly in terms of run-
time from such an implementation. 

 
Table 5.3 Kia Soul EV FASTSim Model Parameters 

    
    

    
    

    

    

    
    

 

 

  

d) Spline PSO (SPSO): The second heuristic method used is SPSO, which uses the PSO heuristic to 
optimize a positional spline trajectory. In this study, the particles used are ϵ vectors for a given set of 
boundaries, and the trace in distance and velocity is computed as in (24). PSO is a quasi-Newton method 
as it applies a modified gradient search but does so with many particles simultaneously. The particle 
position and velocity update equations for PSO are given as 

where V is the vector of particle n-dimensional velocities, w is the momentum term which sets the weight 
of the current velocity, c1 and c2 are the local and global position weights, r1 and r2 are random weights 
assigned to the local and global terms, ϵbest,p is a vector of the best solutions found by each particle, and 
ϵbest,g is the global best solution found by any of the particles. In this study, a mutation step was added to 
the PSO solver to enable faster convergence [56] with the mutation step functioning similar to how it 
functions in the SGA method. Like GA, PSO is inherently parallelizable and scalable, making it well-
suited for a parallel implementation. 
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6. SUBSYSTEM 3: PLANT 

For this study, a 2015 Kia Soul EV was selected because dynamometer data for it are available from 
ANL’s downloadable dynamometer database (D3) [84] and because the research group owns a drive-by-
wire capable physical vehicle for future studies. For vehicle simulation, NREL’s FASTSim [67] was 
selected. FASTSim is an efficient, accurate, and robust longitudinal vehicle simulation commonly used in 
research. Construction of the FASTSim Kia Soul EV model was done using a combination of publicly 
available data, common FASTSim validated model parameters [85], and tuned model parameters. The 
model parameters are shown in Table 5.3. 

The two tuned parameters, CRR and maximum battery storage, were tuned from assumed values to best 
match the battery state of charge (SoC) and battery power traces from the D3 data. After tuning the data, 
the 2015 Kia Soul EV FASTSim model matched the D3 data to within 0.2% in terms of energy 
consumption while closely matching the SoC and battery power traces with mean absolute percentage 
error values of 0.763% and 1.552%.2 The vehicle plant will add uncertainty to the optimization in the 
forms of sensor noise and actuator error. Neither of these is modeled in FASTSim. However, 
Motallebiaraghi et al. [87] performed a dynamometer validation study, which confirmed that similar 
results could be obtained with a physical vehicle plant implying that the control is robust to the noise 
originating from physical sensors and actuators. 

  

 
2 Zero-valued points omitted. 
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7. RESULTS 

Each optimal eco-driving trace generation method was evaluated in terms of the following two criteria: 
1) Ability to produce energy-efficient solution traces 
2) Ability to produce solutions within acceptable levels of run-time 
 

 

The authors evaluated the performance of the methods in generating optimal eco-driving traces for five-
minute driving trajectories. Longer time horizons allow for the solvers to improve over baseline to a 
greater degree, but they also increase the optimization space for the solvers, leading to rapid growth in 
run-times. The five-minute time horizon was picked as a sufficient compromise. Although, ultimately, any 
on-board implementation must be receding-horizon-based to account for changing information in real-
time, this report is only concerned with the efficacy of solver methods for single evaluations. 

The purpose of this study was, specifically, to compare the relative merits of several optimal eco-driving 
trace methods found in the literature. Consequently, the scope was limited. The authors assumed that 
optimal eco-driving trace generation is one step in an optimal eco-driving control algorithm that operates 
in a receding-horizon manner, and that this algorithm comprises the upper level of a two-level controller 
with the lower level being responsible for the instantaneous control of the vehicle. This conception of an 
optimal eco-driving control framework is consistent with the literature as described in Section 2. 

7.1 Optimal Solver Results 

1) EE Improvement: A standard experiment was run for evaluation of the methods with respect to the 
solver and cost function. This experiment was a full-factorial design in which each solver was evaluated 
for 100 predefined boundaries cases and with each cost function. These predefined cases were defined by 
a selection of random starting times and locations on the phase map, as shown in Section 4. The decision 
to run 100 cases per combination was made to allow for the use of large sample statistics. 

The results of the experiment in terms of EE improvement over baseline and in terms of cost function 
reduction over baseline are shown in Figure 7.1 and Figure 7.2. 

Figure 7.1 Mean and standard deviation of EE improvement over baseline results for all the methods and 
cost functions 
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Figure 7.2 Mean and standard deviation of cost function reduction over baseline results for all the 
methods and cost functions 

From Figure 7.1 and Figure 7.2, a definitive order is visible in the relative performances of the methods in 
relation to EE improvement and cost function reduction. It can be observed that the cost function 
reduction exceeded 100% on a recurring basis for the RPC and BPC cost functions. The ability of the 
RPC and BPC cost functions to be reduced by greater than 100% is reflective of the regeneration potential 
over a given drive cycle for those cost functions, and is an artifact of the particular boundary conditions 
used in the experiments. All the optimal eco-driving traces in the experiment start at 15.65 m/s (35 mi/h), 
which is the speed limit of the four streets used for data collection, but optimal eco-driving traces were 
not required to match this speed at the end of the drive cycle. Thus, it was possible for the energy 
regenerated over the course of the drive cycle to exceed the energy spent. Generally, the ranges seen for 
EE improvement as a percentage of the mean were quite large in comparison with the same for cost 
function improvement, and this is the result of the low correlations between cost function improvement 
and EE improvement for all the methods and cost functions. Correlations between cost function 
improvement and EE improvement are shown for all the cost functions in Figure 7.3. 

Figure 7.3 Correlation between cost function reduction and EE improvement for all the cost functions 
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Figure 7.4 Significance of comparative results (P-values), purple indicates that the column significantly 
outperformed the row, blue indicates that the row significantly outperformed the column, and 
green indicates the difference between the row and column 

Correlation between cost function improvement and EE improvement was shown to be best for BPC and 
then RPC; in both the cases, the correlation was significantly better than for Al2N. This is attributed to 
models in BPC and RPC providing a closer match to the model in FASTSim. Due to the large 
uncertainties regarding the EE improvement results, the significance of the observed differences in 
effectiveness could not be assumed; thus, T-tests were conducted between all the combinations of method 
and cost function, and the results are presented in Figure 7.4. 

The results shown in Figures 4 and 7 indicate that the best performing method in terms of improving EE 
was 2SDP followed by the heuristic methods and finally SNLP. The same results indicate that the velocity 
sensitive cost functions enable better solutions to be found than Al2N. Neither result is surprising; only 
DP should be able to find globally optimal solutions, and more information should lead to a better 
solution. 

Finally, by reducing the acceleration and braking limits by a factor of 10–0.5 m/s2, the IDM method was 
able to produce a mean improvement of 5.51% with a standard deviation of 2.79%, comparable to the 
results from the SPSO method. The IDM method was omitted from the comparison as it cannot be made 
to meet the end position constraint and, thus, achieved better EE by reducing average speed and rendering 
the results not directly comparable. 

Figure 7.5 Mean and standard deviations of run-times for all methods and cost functions 
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2) Computational Load: All the methods for this study were implemented in Python 3 with the NumPy 
and Scipy libraries. All the solvers were run-time optimized in Python, and all are vectorized to the 
highest degree possible to minimize run-time [88]. Nevertheless, a specific outcome of the Python 
implementation is that Python has very limited parallel processing capability [89], which means that the 
authors were not able to experiment on the impacts of parallel processing on run-time for the SGA and 
SPSO methods. The computer used for simulation contained an AMD Ryzen 7 3700 × 8-core 
multithreading capable CPU with 16 GB of RAM running the 64 bit Ubuntu 18.04 LTS operating system 
with Python 3.8. All the simulations were conducted on the same computer to ensure the integrity of 
relative run-times. Even though Python is unlikely to be used for onboard implementation, the 
computational time results are of interest for the relative comparison of different methods in terms of 
computational time required. Figure 7.5 shows the relative run-times for each method and cost function. 

An immediate conclusion is that the 2SDP method is not competitive with the other methods as a real-
time control due to its large run-time requirement. Implementation specifics play a huge part in 
determining run-time, and it is possible to significantly reduce the run-time requirements for the 2SDP 
method by changing hardware and language; but these changes would also benefit the other methods, and 
the relative gap should remain within the same order of magnitude. The authors did not find a single 
paper in the literature which implemented a 2SDP method in real time. The closest examples would be 
[33] and [35], in which a DP solver is used as the higher level in a two-level receding-horizon controller, 
but the DP algorithm takes multiple seconds to produce a novel solution, and [27], which implements a 
real-time ADP solver. 

It is also evident that the SGA method is the quickest to execute and could be made to execute in even 
less time with the use of parallel processing, with the same being true for SPSO. Current vehicular 
computing systems differ in architecture from desktop computers although this may soon change [90]. 
Implementation on automotive controllers may result in changes to the relative run-times. However, the 
order is unlikely to change given that the differences are in orders of magnitude. 

7.2 Eco-Driving Traces 

The differences in EE improvement reflect visual differences in optimal eco-driving trace traces. A 
representative example is shown in Figure 7.6 and Figure 7.7 for all the methods and cost functions with 
one set of constraints. 

In general, the optimal eco-driving traces improve over the baseline traces primarily by minimizing the 
speed reduction due to traffic signals. There are many local optima in the results’ space, and many are 
very similar to the global optimum; thus, the non-DP methods are most likely to settle on a local 
optimum. However, these local optima clearly approximate the global optimum. The optimal traces for 
the Al2N cost function are visually distinct from those generated using the speed-sensitive cost functions. 
While the Al2N cost function is only sensitive to absolute acceleration, the speed-sensitive cost functions 
are sensitive to directional acceleration and proportional to speed, speed squared, and speed cubed. The 
result is that the speed-sensitive cost functions will tend to reduce maximum speed and encourage 
deceleration to a greater degree than Al2N. When compared with the literature, traces seen in this study 
are more jerky. There are two reasons for this. First, the constraints used in this study are more complex 
than those used in most of the literature being time-varying and in distance and speed. The second is that 
no explicit proxy for passenger comfort was added to the cost function. The velocity-sensitive cost 
functions resulted in traces with lower speeds and higher decelerations, which would undoubtedly be less 
comfortable for passengers. 
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Figure 7.6 Example position versus time traces for all the methods and cost functions 

Non-optimal methods may also be used to generate eco-driving traces. Four optimal methods for 
generating optimal eco-driving traces were compared with IDM where IDM parameters used were chosen 
to be representative of normal driving behavior. IDM parameters can also be chosen to result in improved 
EE. The IDM acceleration parameters and aggression parameters were shown to have large and 
significant effects on EE in Section 5. By reducing the allowed accelerations by a factor of 10–0.5 m/s2, a 
mean EE improvement of around 5% was attained. An EE improvement of 5% is at the low end of what 
was attained with the optimal methods. IDM is a low-cost algorithm, which requires no look-ahead 
information, making it much easier to implement than the optimal methods. There are, however, 
advantages to the optimal methods over non-optimal methods regardless of how the non-optimal methods 
are applied. Optimal control allows for a degree of performance and flexibility that non-optimal control 
does not. The boundary conditions used for all the optimal methods used in this study required that the 
vehicles arrive at a given distance at a given time, thus maintaining a precise average speed. The solvers 
were able to still produce significantly more efficient traces than baseline. Low acceleration IDM, in 
contrast, cannot meet the same final condition and was able to improve over baseline principally by 
traveling at a lower mean speed. In generating optimal eco-driving traces, there is a balance between 
maximizing EE and limiting travel time. In this study, the travel-time aspect was removed from 
consideration by applying a strict final condition, but all the optimal control methods presented could be 
modified to allow for a precise tradeoff between EE and travel time. Thus, while requiring more in terms 
of increased computational load and look-ahead information, optimal control does enable more precision 
and flexibility than non-optimal control. 
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Figure 7.7 Example velocity versus time traces for all the methods and cost functions 

7.3 Summary 

The mean results for the methods and cost functions are presented for run-time and EE improvement in 
Figure 7.8. Several observations can be made. The first is that the globally optimal solution produced by 
2SDP is usually significantly more efficient than the locally optimal solutions but requires much more 
run-time. DP can be made to run quicker with partial parallelization [91], but this would not be enough to 
reduce the run-times to the level of the PTO methods. 

Figure 7.8 Comparison of run-time and EE improvement means for all the methods and cost functions 
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The literature contains several papers describing the practical implementation of multistate DP-based eco-
driving control algorithms, but these either evaluate the problem on a less than 1-Hz basis or use sub-
optimal approximations of the cost-to-go function. The DP-based optimal eco-driving trace solvers seem 
unlikely to become the basis of widely available commercial eco-driving systems due to the 
computational cost unless they rely on cloud computing. 

Of the PTO solvers implemented, it is clear that the GA-based method was most effective in both criteria 
of evaluation. Visually, the SGA method with the RPC and BPC cost functions occupies a position up and 
to the right of the general trend line seen in Figure 7.8, indicating a favorable performance in both criteria. 
One reason for this is that the specifics of the optimal eco-driving trace generation problem, as defined in 
this study, lend to the strengths of the GA, which can explore complex optimization spaces quickly and 
efficiently by exploring many directions simultaneously and removing poor solutions from the selection 
pool. PSO also explores many solutions simultaneously, but those particles, which are seeded in low 
reward regions, have to gradually approach better solutions. 

The specifics of the optimal eco-driving trace problem as posed in this study did not favor the SNLP or 
SPSO methods. At their cores, IPOPT and PSO are gradient search algorithms, extensions of Newton’s 
method, and require the computation of a gradient at each optimization step. With nonlinearity caused by 
the interpolation polynomials and the nonconvexity of the constraints, such gradient search methods were 
less effective. It is not surprising that the SGA method was found to be the best of the type. 

Another observation from Figure 7.8 is the benefit of additional information to solvers in generating the 
optimal eco-driving trace. In the literature, it is common to see minimization of acceleration used as a 
proxy for maximization of EE. This trend of acceleration minimization is also very common in robotics 
control literature, and as many concepts in CAV control arise from robotics it is easy to see the origins of 
the assumption. The assumption that acceleration minimization is a valid proxy for EE optimization is 
stated explicitly in several well-cited papers [74], [75]. A primary reason for the use of the l2 norm of 
acceleration for a cost function is that it is independent of vehicle and powertrain parameters, and the 
optimization can be reduced to a conventional quadratic programming problem. The outcomes of this 
study indicate that cost functions, which incorporated more information about the vehicle such as 
velocity, aerodynamic characteristics, rolling resistance, and powertrain efficiencies, enabled optimizers 
to achieve higher EE for electric vehicles assuming perfect preview of the constraints. Note that the 
velocity-sensitive cost functions in this study require minimal additional time to compute compared with 
the l2 norm of acceleration. 
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8. CONCLUSION 

A great breadth of knowledge on the subject of autonomous eco-driving control has been generated by the 
research community in recent years. As the vehicular and infrastructural technology, which enables 
vehicular autonomous control to become more widespread, the opportunity to apply this knowledge in 
production vehicles becomes more achievable. A comprehensive, implementation-oriented analysis was 
performed to compare the relative merits of several optimization methods found in the literature. A survey 
of the literature was conducted, and four representative optimization methods (2SDP, and trajectory 
optimization with IPOPT GA, and PSO) were implemented and refined for application in simulation with 
real-world infrastructure data. Numerical simulations were then conducted on these methods using three 
progressively less abstracted cost functions (l2 norm of acceleration, road power, and calculated battery 
power), and each was evaluated relative to the others in terms of performance and run-time. From these 
simulations, the following conclusions were reached: 

1) Minimizing the l2 norm of acceleration is confirmed to provide EE improvements. 
2) Speed-sensitive cost functions that reflect vehicle and powertrain characteristics can yield improved 

EE results over the l2 norm of acceleration for electric vehicles. 
3) DP methods offer the highest potential for EE improvement (in the range of 7%–15%) but are 

extremely computationally expensive compared with other methods requiring on the order of 100×–
1,000× as long to execute. 

4) GA showed the most potential as a real-time method based on its relatively high performance (5%–
10% EE improvement) in EE optimization and its low computational cost. 
 

Near-future ADAS systems are anticipated to include high performance in-vehicle computers and/or 
embedded hardware, which is capable of computing and executing eco-driving control, meaning that this 
technology can be implemented as a software update. If a significant proportion of vehicles use this 
technology, the national energy savings could be significant. 

From the selected optimization approaches considered, the results suggest the use of a GA method with an 
RPC cost function as providing the best tradeoff between achievable EE and computational overhead for 
optimal eco-driving trace generation for urban eco-driving BEVs. 
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