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ABSTRACT 

During area-wide episodes of poor air quality, people may reduce their transportation-related emissions 
by driving less, reducing their exposure to emissions by walking/bicycling less, or going about their lives 
as usual. These three reactions have different consequences for transportation, health, and the 
environment. This study investigated the aggregate effects of air pollution on multimodal traffic volumes 
by comparing associations of the daily air quality index with pedestrian and automobile traffic volumes 
(collected at many different locations) and system-wide bus/rail ridership over a two-year period in two 
regions of Utah, United States. We used multilevel modeling to measure how these relationships differ by 
mode and across locations, while controlling for weather and investigating built/social environmental 
characteristics. Overall, we found strong evidence that pedestrian volumes declined by 10% or more, on 
average, on days where the air quality was “unhealthy for sensitive groups” (orange). There was some 
evidence that automobile traffic volumes increased on poor air quality days, especially on the way to 
mountainous recreation areas surrounding urban valleys. Decreases in bus/rail ridership were not 
statistically significant. Overall, there was more evidence for “risk averse” reactions than for “altruistic” 
travel behavior changes, suggesting that newer or stronger policies may be needed in order to reduce 
driving and encourage more sustainable and healthful travel behavior changes in regions when faced with 
periods of area-wide poor air quality.  
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EXECUTIVE SUMMARY 
 
Many regions experience episodes of unhealthy area-wide poor air quality due to wildfire smoke or high 
concentrations of particulate matter or ozone from transportation emissions and other sources. 
Governments often use hard and/or soft policies to encourage travel behavior change and reduced driving 
during these events, such as mandatory telework or encouragement to trip chain or postpone unnecessary 
trips. Individually, people may want to: 1) reduce their contribution to transportation-related emissions by 
driving less (an altruistic response); 2) reduce their exposure to air pollution by walking less (a risk averse 
response); or 3) go about their daily activities as usual. Unfortunately, our understanding of the 
effectiveness of the travel behavior change strategies at a population-wide level is limited by a lack of 
research on how area-wide poor air quality affects travel amounts using different modes, measured in the 
same locations.  
 
Thus, this study had two primary objectives: (1) To measure the effects of area-wide air pollution on 
multimodal traffic volumes and study how these effects differ by mode by building separate models for 
walking, driving, and transit to observe the difference in effects across modes. (2) To explore locational 
variations in the effects of area-wide air pollution on multimodal traffic volumes, by using multilevel 
modeling to represent the locational variations in each mode-specific model. To achieve these objectives, 
we studied two regions in the state of Utah, United States. Specifically, we assembled detailed daily data 
on pedestrian and automobile traffic volumes (from many different locations) and system-wide bus/rail 
transit ridership for a two-year period; we linked these multimodal traffic volumes with air pollution data 
and weather control variables; and we used multilevel modeling to measure how the air quality–traffic 
volume relationship differs by mode and across locations.  
 
Overall, we found strong evidence that walking decreased on days with poor air quality, with pedestrian 
volumes declining by up to 10% or more (on average) when the air pollution was “unhealthy” (orange, air 
quality index >100). Automobile traffic volumes did not change nearly as much as did pedestrian 
volumes, but the evidence did suggest some increases in driving as air quality declined (results differed 
between the two study areas and within the second study area). Although our models found general 
decreases in system-wide bus and rail transit ridership, the decreases were not statistically significant. By 
looking at variations in air pollution’s effects on traffic volumes in different locations, we also uncovered 
some interesting findings. Notably, several locations where automobile traffic volumes increased on days 
with worse air quality were on highways en route to mountainous skiing, hiking, and recreational areas. 
This could reflect a trend of people driving into the mountains to escape urban valley air pollution.  
 
Overall, there was more evidence for “risk averse” reactions than for “altruistic” travel behavior changes 
because walking and public transit usage decreased while driving increased slightly on days with greater 
area-wide air pollution. This suggests that newer or stronger policies may be necessary in order to 
encourage more sustainable and healthful travel behavior changes. There could be more requirements or 
options for teleworking or flexible hours to reduce car commuting. Transit agencies could implement 
fare-free days to encourage transit use during periods of poor air quality. Also, there are several 
opportunities for future research to build upon this study’s work to advance knowledge and policy-
making around the relationship between area-wide poor air quality and multimodal travel behavior.  
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1. BACKGROUND 
 
1.1 Introduction 
 
In many parts of the world, air pollution can frequently reach unhealthy levels, affecting both urban and 
rural downwind communities and negatively impacting public health, out-of-home and outdoor activities, 
recreation, and tourism. The transportation system is the major cause of pollutants like fine particulate 
matter (PM2.5) and ground-level ozone (Climate Watch, 2019). Road traffic exhaust emissions have been 
the major concern as they are associated with the production of PM2.5 and tropospheric ozone (Colvile et 
al., 2001).  
 
During area-wide air pollution events (smog, haze, dust, and wildfire smoke), governments often resort to 
hard and soft policies to induce behavior changes in people (Teague et al., 2015; Cummings & Walker, 
2000). For example, air quality alerts are often issued to spread awareness regarding high pollution levels 
and to encourage (or discourage) travel behaviors that would contribute to reduced (or increased) 
transportation emissions, e.g., carpooling, trip chaining, teleworking, postponing trips, or using public and 
active transportation modes (UDOT, 2022). 
 
However, without detailed study of the link between air pollution and travel behavior, the design of 
policies is far from effective. Although research on effects of the transportation system on air quality and 
air pollution is plentiful (e.g., Caiazzo et al., 2013; Kryzanowski et al, 2005), research emphasizing the 
reverse link—i.e., how air pollution measurements impact multimodal traffic volumes and other 
aggregate outcomes of individuals’ travel behaviors and transportation choices—is comparatively limited. 
In order to improve public health as well as manage the public’s responses to such air pollution events, it 
is important to know how people’s travel behaviors are affected by area-wide air pollution. 
 
Theoretically, there are a variety of ways in which traveler behaviors may be affected by area-wide air 
pollution events, associated information, and any policy actions. First, people may exhibit no behavioral 
response, especially if the pollution event is minor or few options for alternative behaviors or activity 
schedules exist. Second, people may reduce their automobile travel or use of other polluting travel modes 
in order to minimize their contribution to the air pollution issue. Third, people may increase their use of 
encapsulated motorized modes, switching from exposed active modes in an attempt to reduce their 
exposure and inhalation of air pollution. One might call the second option an “altruistic” response, while 
the third option is a “risk averse” response (Noonan, 2014). The altruistic response prioritizes the overall 
good of society even if it comes at one’s individual benefit (forgoing automobile usage to reduce air 
pollution even if it increases one’s exposure to emission), while the risk averse response prioritizes one’s 
individual benefit over the common good of society (taking up automobile usage to decrease one’s 
exposure to emissions even if it contributes to more air pollution). The conflict between these two 
responses highlights the challenge of information dissemination and soft/hard policies that seek to 
mitigate episodes of area-wide air pollution through travel behavior change.  
 
In addition to the severity of the air pollution event, the population-wide response depends on the 
interplay of various factors, including (but not limited to) the existing transportation and built 
environment structures. Thus, an investigation into the relationship of air quality and multimodal traffic 
volumes—with consideration for varying responses across built environment contexts—is needed to 
effectively manage the travel behavior response during episodes of poor air quality. This study addresses 
the need by employing multilevel modeling to study the aggregate effects of air quality on motor vehicle 
and pedestrian volumes and transit ridership in different locations.  
 



 2 

Note that we could have taken a disaggregate approach to study the impact of air quality on traffic 
volumes by studying people’s behavior at an individual level, which could have considered awareness, 
psychological, and other personal factors (Zhao et al., 2018; Li & Kamargianni, 2017). But for this study 
we chose an aggregate approach as it allowed us to analyze the overall impact of air quality on traffic 
volumes across different modes. This approach provides a broader perspective and helps identify general 
trends in population-level travel behavior response during periods of bad air quality. The aggregate 
approach helps us overcome one of the major disadvantages of the individual-level approach: probable 
selection of a non-representative sample of the population. Also, people’s self-reported behavior in 
surveys might not match their actual behavior, and to track those individual behaviors over long periods 
of time is demanding. Furthermore, an aggregate approach could be more relevant in exploring the 
interplay between air quality’s effect on traffic volumes and the built environment.  
 
1.2 Literature Review 
 
As active transportation use (walking and cycling), automobile, and public transit modes involve different 
levels of exposure to air pollutants (both the total exposure and exposure/inhalation rate) (Chaney et al., 
2017; Morabia et al., 2009; Good et al., 2016) and different contribution levels to emissions (Colvile et 
al., 2001), people’s responses regarding the use of each mode might be different. Thus, we have 
streamlined a brief literature review into three sections. Separate sections review literature on active 
transportation, driving, and public transit to highlight potential similarities and differences in modal 
reactions to increased levels of area-wide air pollution. 
 
1.2.1 Active Transportation 
 
In the domain of exploring the relationship between air pollution and active transportation, a few studies 
have been conducted in different locations around the world. Doubleday et al. (2021) examined the 
impact of wildfire smoke events on pedestrian and bicycle counts at eight city counters in Seattle, WA. 
They calculated the difference between pre-, during-, and post-wildfire smoke periods for two smoke 
events in the summers of 2017 and 2018 and found that wildfire smoke events decreased daily average 
bicycle counts by 15%–36% across the eight counters, and 32%–45% across the two pedestrian counters. 
Similarly, Saberian et al. (2017) analyzed cyclist counts at 31 points across different cycle paths in the 
city of Sydney, Australia. The authors concluded that when an air quality alert was issued, the amount of 
cycling was reduced by 14%–35%. Holmes et al. (2009) analyzed traffic counts at 30 multi-use trail 
points from May 2004 through August 2006 in Indianapolis, IN. They employed fixed effects regression 
and found that both high levels of ozone and fine particulate matter (PM) were significantly associated 
with lower levels of trail traffic. Kim (2020) investigated how PM2.5 and PM10 affect bike sharing in 
different seasons in Seoul, South Korea. The study concluded that high PM levels in spring and winter 
negatively affected bike sharing but showed no significant association with bike sharing during summer. 
Chung et al. (2019) examined the effect of PM10 for different air quality grades (good, moderate, and 
bad) on pedestrian volume data collected from 1,223 street locations in Seoul during October 2015. They 
used multiple regression and concluded that when PM increased by 1%, pedestrian volume decreased by 
0.121%. Acharya and Singleton (2022) studied the non-motorized trail volumes in Logan, Utah, and 
found a measurable but small deterring impact of air pollution events on utilitarian active transportation. 
 
Although the above-mentioned studies were conducted in different settings at different time-points, they 
all reached similar conclusions: walking/cycling activities decrease during the episodes of poor air 
quality. However, it is interesting to note the different approaches and control variables employed by the 
studies. Saberian et al. (2017) subdivided trips by purpose and stratified the effects of air pollution for 
leisure and commuter trips. This allowed the authors to deduce that cycling for leisure was reduced more 
(38%) than cycling to work (20%). These studies have included a mix of explanatory variables to control 
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for the effects of time and weather. However, we see no consistency in the addition of controls. For 
example, seasonal control was lacking in all except Kim (2020), who addressed this by creating different 
models for different seasons. On the other hand, Holmes et al. (2009) explored the distinction of effects 
due to air pollution itself and that of air quality alerts. They isolated the effect of public alerts by 
estimating the probability of a public announcement being made as a function of the air quality level 
parameters. However, the study did not find the coefficient on the corrected air pollution advisory 
variable to be significant. 
 
1.2.2 Automobiles 
 
Another stream of research focuses on the effect of air pollution levels and/or air quality alerts on 
encapsulated and motorized modes such as automobiles. Using driving data from the Atlanta Regional 
Commission in central Atlanta, Noonan (2014) studied the relationship of household-level daily vehicle 
miles traveled (VMT) and regional ozone. The author hypothesized that daily VMT would fall on ozone 
alert days. However, there was no significant discontinuity at the ozone cutoff point of 85 parts per billion 
(ppb). In another study in Salt Lake and Davis counties in Utah, Tribby et al. (2013) analyzed motor 
vehicle traffic data to examine the relation between daily traffic and air quality alerts. They ran ANOVA 
and multiple regression methods for summer and winter traffic separately. The authors found that there 
was no significant reduction in daily motor vehicle traffic during yellow and red days of air pollution. 
They concluded the ineffectiveness of air quality alerts on reducing traffic volume during days of poor air 
quality. The authors found similar reactions to alerts for both PM2.5 and ozone. They also noted an 
unintended consequence of the alerts as they found an increase in the average traffic volume for yellow 
and red days, which was significant for traffic counters near the mountain regions. The authors attributed 
the increase in traffic to the presence of mountains nearby that provide an easy escape for Salt Lake 
residents from the air quality problem. 
 
1.2.3 Public Transit 
 
Welch et al. (2005) studied the effects of ozone action day public advisories on train ridership in Chicago. 
For the study, they used a fixed effects regression model to analyze the effect of ozone action days on 
hourly Chicago Transit Authority train ridership. The effect was deemed significant and even sizable 
during some parts of the day, but the overall effect of ozone action days on ridership was not significant. 
Cutter and Neidell (2009) studied the response of traffic to the “Spare the Air” program in the San 
Francisco Bay Area and found that total daily traffic was reduced by 2.5%–3.5%. This was accompanied 
by two large increases in BART (Bay Area Rapid Transit) at 9 am and 6 pm. The results suggested that 
air quality advisories reduced traffic volume and slightly increased the use of public transit, which 
supported the role of voluntary information programs on change in traffic volumes. 
 
1.2.4 Research Gaps 
 
To conclude, the most pronounced changes in traffic volumes in response to area-wide poor air quality 
are reductions for open and active modes, especially for discretionary trips. This conclusion, however, 
does not clarify if the decrease in pedestrian/cyclist volume is accompanied by an increase in other modes 
such as driving and transit. Since the existing studies on driving (Noonan, 2014; Tribby et al., 2013) show 
insignificant changes in volume during days of bad air quality, it leads us toward a gap in the literature: 
the lack of research about traffic volume changes for different modes measured in the same location. As 
the response to air quality depends on the available substitute mode options, demographics, and other 
built environment characteristics, any conclusions about modal shifts are potentially inappropriate if made 
by comparing studies from different sites (e.g., active mode studies from Seoul, Sydney, and Seattle 
versus motorized mode studies from Atlanta and Salt Lake City versus transit studies in Chicago and Bay 



 4 

Area). Thus, there is a need for research exploring traffic volume changes for different modes in the same 
location.  
 
Also, the reaction to changes in air quality is likely affected by characteristics of a place, such as the 
availability of transit, the built environment, and the sociodemographic characteristics of the location. 
Most studies have not explored spatial variations in the relationships between air quality and traffic 
volumes. Although Tribby et al. (2013) concluded that stations near mountains react differently to stations 
near downtown, their conclusion was derived by calculating differences between the mean values of 
traffic for different air quality categories for individual stations. Their approach does not allow us to 
explore the variation of the air quality–traffic volume relationship according to different locational 
characteristics. Chung et al. (2019) also controlled for spatial units, but they did so for weather parameters 
and calculated a single defining relationship between air quality and traffic volume for the entire area. 
Thus, a methodological gap to be filled is modeling variations in the relationship between air quality and 
traffic volume for different locations. 
 
1.3 Research Objectives 
 
The above-mentioned gaps point us toward a need for this study to explore the relationships between air 
quality and traffic volume for different modes in the same area, and allowing for the possibility that each 
count location could have a different reaction to air pollution. Thus, this research addresses these needs by 
focusing on the following objectives: 

1. To measure the effects of area-wide air pollution on multimodal traffic volumes and study how 
these effects differ by mode by building separate models for walking, driving, and transit to 
observe the difference in effects across mode. 

2. To explore locational variations in the effects of area-wide air pollution on multimodal traffic 
volumes by using multilevel modeling to represent the locational variations in each mode-specific 
model. 

 
The remainder of this report is structured as follows. Chapter 2 describes the two study areas, the 
multifaceted data, and the analysis methods employed. Chapter 3 presents results for the analyses in study 
area 1. Chapter 4 presents results for the expanded analyses in study area 2. The concluding Chapter 5 
discusses the findings in relation to the study’s objectives and offers both implications for policy and 
recommendations for future research.  
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2. DATA AND METHODS 
 
2.1 Setting and Study Areas 
 
To meet the objectives of this research project, we started by defining two study areas in the state of Utah 
in the western U.S. The first study area includes Cache County, which lies in the northernmost part of 
Utah. The second area includes the counties of the Wasatch Front region (Weber, Davis, Salt Lake, and 
Utah). All of the counties involved in the study are listed in Table 2.1 along with their 2020 population 
(U.S. Census Bureau, 2023).  
 

Table 2.1 Counties in study areas 
Study Area County 2020 Census Population 

Study Area 1 Cache 133,154 
Study Area 2 Weber 262,223 

 Davis 362,679 
 Salt Lake 1,158,238 
 Utah 659,399 

 
The reasons behind the demarcation of our geographical scope into two areas are transit accessibility and 
area coverage of the regions. Cache County (study area 1) is not served by the Utah Transit Authority 
(UTA); instead, it has its own local transit system, Cache Valley Transit District (CVTD). Thus, transit 
accessibility in study area 1 is not as robust as in study area 2. Also, the lack of data availability from the 
Smart Location Database, which used pre-2020 census data and transit information from General Transit 
Feed Specification (GTFS) feeds, meant some of the built environment variables related to transit service 
were not available in this study area. Secondly, study area 1 is a smaller region with a small dataset, 
which allowed us the leverage to build a model explaining the spatial distributions of the effect of air 
quality on multimodal traffic volumes. This model was then efficiently replicated for study area 2. 
 
Study area 1 includes a university town in an agricultural area. Logan is the biggest town in study area 1 
and also home to Utah State University. Study area 2 includes the majority of the state’s population in one 
long and narrow urban area. The region is fast-growing and home to the state’s largest city and the 
capital, Salt Lake City. The second largest metro area in the state, Provo, also lies in study area 2. The 
prominent universities in the area are University of Utah, Brigham Young University, Weber State 
University, and Utah Valley University.  
 
Both study areas experience summertime wildfire smoke (mostly from California and the Pacific 
Northwest) as well as wintertime inversions that trap pollutants from transportation, agriculture, and 
industry in snow-covered urban valleys adjacent to recreational mountain areas. During summer, ozone 
levels get high in Utah as vehicle emissions and industrial sources mix with sunlight and heat. Smoke 
from various western North American wildfires (the Dollar Ridge Fire in July 2018 is one notable 
example) also contribute to pollution in summer. An ozone concentration of 70 ppb—the eight-hour 
National Ambient Air Quality Standard (NAAQS) standard—is often exceeded in the Wasatch Front 
(Utah DEQ, 2022a).  
 
During winter months, areas in the Wasatch Front also experience high levels of particulate matter PM2.5 
with daily average values reaching up to 60–80 μgm-3. The PM2.5 pollution is related to the formation of 
persistent cold air pools in Utah’s bowl-shaped basins. These conditions are related to stratification and 
capping inversion of air, which in turn leads to pollutants being trapped near the surface (Baasandorj et 
al., 2017). Study area 1 is similar, as high particle concentrations result from severe cold temperature 
inversions, a mix of rural and urban sources, and a confined geographical area (Silva et al., 2007). Due to 
these pollutants, the PM2.5 concentration of 35μgm-3—the 24-hour National Ambient Air Quality 
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Standard (NAAQS) standard—is often exceeded in the region, leading to some of the worst non-fire-
related air quality within the state of Utah and sometimes the entire U.S. (Wang et al., 2015). The 
counties comprising study area 2 are designated as serious non-attainment areas for PM2.5, and Cache 
County in study area 1 was only redesigned as a maintenance area in 2021 (Utah DEQ, 2022a). 
 
2.2 Data and Variables 
 
In line with our objective of measuring changes in daily multimodal traffic volumes in response to area-
wide air pollution for multiple modes across various locations, we assembled a variety of data. The 
following subsections describe how we obtained multimodal traffic volumes—daily motor vehicle 
volume from traffic count stations, daily pedestrian volumes from traffic signals, and public transit 
ridership (across entire service areas) from transit agencies—assembled air quality data and weather from 
atmospheric sensors, and combined these data with locational information about the built environment 
around each count location. A two-year period from January 2018 through December 2019 was selected 
for this study. Extending the timeframe to include the COVID-19 pandemic could have led to erroneous 
conclusions about the relationship between air quality and multimodal traffic volumes because of the 
difficulty in controlling for COVID effects. Thus, this analysis did not consider time periods during the 
COVID-19 pandemic.  
 
2.2.1 Multimodal Traffic Volumes 
 
Motor vehicle traffic volume counts on various streets and highways were taken from continuous count 
stations (CCSs) maintained by the Utah Department of Transportation (UDOT). The stations record the 
number of vehicles passing a given station by using sensor devices such as inductive loops and overhead 
microwave radar sensors. The UDOT counts provided the number of vehicles crossing each location per 
day for CCSs distributed throughout Utah. The motor vehicle traffic volume data had some missing 
observations spread across locations and times. To minimize the effects of missing data on our analysis, 
we set a minimum threshold of complete data for 73 days (10% of a possible 730 days). After using this 
threshold to filter out count stations, six stations in study area 1 and 72 stations spread across study area 2 
were selected for the analyses. The remaining missing data from the filtered stations were then omitted.  
 
Pedestrian volumes come from a novel big data source: pedestrian push-button data obtained from high-
resolution traffic signal controller logs. In Utah, such real-time and archived data are available from 
nearly all traffic signals throughout the state. A recent research project compared push-button data with 
ground-truth pedestrian volumes collected from over 10,000 hours of video at 90 signalized intersections 
throughout Utah. The project developed a set of simple regression models to convert push-button data to 
estimated pedestrian crossing volumes. Details of these methods are provided elsewhere (Singleton et al., 
2020; Singleton & Runa, 2021), but the methods had good accuracy (correlation of 0.84, mean absolute 
error of 3.0 pedestrians per hour).  
 
The pedestrian volume estimates contained several sites with a large number of observations having zero 
or missing values. Common possible reasons were faulty stations, power outages, weekends, few users in 
a particular area, or no data before a certain date. To deal with these observations, we inspected the 
frequency and pattern of zero observations and determined which were likely missing versus true zeros. 
In study area 1, this was done manually. In study area 2, there were too many sites (up to 1,983) to do a 
manual inspection. Therefore, after some preliminary manual inspections, we constructed several flags to 
help us identify sites with likely true zeros: mean daily volume less than or equal to 50, 0 contained 
within two standard deviations of the mean, at least 10% of observations between 1 and 10, maximum 
difference of 3 between the mean with versus without zeros, and maximum difference of ±1 between the 
standard deviation with versus without zeros. At all other sites we assumed zeros were missing. We also 
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wanted to only study signals with a sufficient number of true non-zero observations (at least 10%, 73 
days) and not too many (likely true) zero observations (no more than 10%, 73 days). After all of this 
filtering, we ended up using daily estimates of pedestrian volumes at 39 signals in study area 1, and 1,435 
signals in study area 2.  
 
Daily transit ridership was obtained from the transit service provider operating in each study area. For 
study area 1, the Cache Valley Transit District (CVTD) provided the total daily transit ridership across all 
of its bus routes for each day throughout the study period. For study area 2, the Utah Transit Authority 
(UTA) provided the total daily transit ridership across each of its commuter rail (FrontRunner) and light 
rail (TRAX) routes for each day during the two-year study period. We also attempted to get bus ridership 
data from UTA, but its officials were not confident of the accuracy or completeness of the day-to-day 
daily bus ridership statistics.  
 
Note that the transit ridership datasets have a different structure than the pedestrian and automobile traffic 
volume data, as they capture area-wide ridership rather than location-specific ridership. We are using 
system-wide data for transit ridership rather than location-specific/route-specific data because we would 
have had to use boarding/alighting data in order to be location/route specific. Boarding/alighting data 
would capture only those trips starting or ending at that particular location, whereas the pedestrian and 
automobile volume data capture every trip passing through a point. Thus, to maintain consistency in the 
nature of data used for analysis across each mode, we opted for system-wide data for transit, even if it 
meant forgoing a locational analysis (objective 2) for transit ridership. 
 
2.2.2 Air Pollution, Weather, and Control Variables 
 
Daily air quality information (air quality index, based on concentrations of air pollutants measured from 
sensors) was obtained from the U.S. Environmental Protection Agency (EPA). In 2012, the Utah Division 
of Air Quality (UDAQ) revamped its air quality categorization in line with the EPA standard and created 
six color-based categories, as described in Table 2.2. The Air Quality Index (AQI) is a common-scale 
health-based representation of pollution due to ozone, particulate matter, and oxides of nitrogen, sulfur, 
and carbon. At most air quality monitoring stations in Utah, only nitrogen dioxide, ozone, and fine 
particulate matter (PM2.5) were tracked.  
 
During the study period (2018–2019), the highest daily AQI value was 169 (red). However, only a few 
dates at a few locations were in the range of 150–169. Adding a new color-coded category to our analysis 
for a few samples would weaken the statistical potency of our model. Thus, only three color categories 
(green, yellow, and orange+) were considered in our analysis, and the limited observations in the range of 
150–169 AQI (red) were put under the orange+ category. 
 
Table 2.2 Air Quality Index (Utah DEQ, 2022b) 
Color AQI range Health concern Description 
Green 0–50 Good Air quality is satisfactory, and air pollution poses little or no risk. 
Yellow 51–100 Moderate Air quality is acceptable. However, there may be a risk for some 

people, particularly those who are unusually sensitive to air pollution. 
Orange 101–150 Unhealthy for 

Sensitive Groups 
Members of sensitive groups may experience health effects. The 
public is less likely to be affected. 

Red 151–200 Unhealthy Some members of the public may experience health effects; members 
of sensitive groups may experience more serious health effects. 

Purple 201–300 Very Unhealthy Health alert: The risk of health effects is increased for everyone. 
Maroon 301–500 Hazardous Health warning of emergency conditions: everyone is more likely to 

be affected. 
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Travel behaviors are also influenced by weather and climatic factors (Böcker et al., 2013; Runa & 
Singleton, 2021). Therefore, to control for atmospheric environmental impacts on multimodal traffic 
volumes, daily weather data (about precipitation, snow, temperature, etc.) were obtained for various 
stations throughout the study areas from the National Centers for Environmental Information (NCEI) of 
the National Oceanic and Atmospheric Administration (NOAA). To account for seasonal differences and 
behavioral adaptation to weather expectations, a maximum temperature difference variable was created as 
a measure of how much warmer the maximum temperature observed in a day was compared with the 30-
year average of daily maximum temperature on the same day. Since the study areas experience both rain 
and snow throughout the year, a combined precipitation variable was created categorizing days with no 
rain and no snow, light rain, light snow, heavy rain, and heavy snow. 
 
Besides the weather controls, additional control variables were introduced to account for temporal 
variations in traffic volumes and travel patterns. A seasonal categorical variable, which distributed 12 
months into four seasons, was created. Days-of-the-week were categorized into Saturday, Sunday, and 
weekdays to control for the effects of weekends on traffic. Also, holidays in Utah during the study period 
were identified (Office Holidays, n.d.).  
 
Some unique aspects about the assembly of air pollution, weather, and control variables in each of our 
study areas are discussed in the following subsections.  
 
2.2.2.1 Study Area 1: Air Quality and Weather Stations 
 
For our initial investigation in study area 1, air quality data from a single monitoring station in Smithfield 
(a suburb of Logan) was used. The air quality station was 15.4 km and 21.5 km apart from the farthest 
pedestrian signal and motor vehicle count station, respectively. Also, because the major air quality issue 
in study area 1 was particulate matter, we considered AQI for PM2.5 only.  
 
Weather data were obtained from two weather stations: one located at Utah State University in Logan that 
reported daily precipitation (in mm), snowfall (in mm), and maximum and minimum temperature (in °C), 
and another located at the Logan–Cache Airport, where a dataset containing historical temperatures for 
the last 30 years was obtained. The weather station was 6.2 km and 28.1 km apart from the farthest 
pedestrian signal and automobile count station, respectively. From the data, we constructed a combined 
precipitation/snow categorical variable, reflecting days with no rain and no snow, light rain (1–25 mm) or 
heavy rain (>25 mm) but no snow, and light snow (1–50 mm) or heavy snow (>50 mm). We also 
constructed a variable reflecting the difference from normal for maximum temperatures (°C).  
 
2.2.2.2 Study Area 2: Air Quality and Weather Station Matching 
 
Since the air quality and weather stations in study area 2 were not in the same locations as the pedestrian 
signals and motor vehicle traffic count stations (and we had a large number of available air quality and 
weather stations to choose from), we had to match stations with each other. The minimum distance 
approach for each air quality and weather attribute was employed to match stations and link data. For 
example, assume a traffic station (T1) had two weather stations (W1 and W2) at a distance of 5 km and 9 
km, respectively. (The maximum threshold distance between weather stations and traffic stations was set 
at 15 km for our study). Ideally, we would take all the weather data from W1, because it was closer. But if 
W1 only recorded temperature data, then for other missing weather records (such as snow, precipitation) 
we matched it to the next nearest weather station (W2). If W2 did not contain such records, the record 
would be registered as missing. Similarly, if the same traffic station (T1) had three possible air quality 
stations (A1, A2, and A3) at distances of 10, 16, and 25 km, respectively (our distance threshold for air 
quality stations was set at 30 km), we would choose air quality data from A1. Only if A1 had missing air 
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quality data (for one or more attributes), the next nearest air quality station, A2, would be considered. 
This individual attribute matching helped us to decrease the number of missing records.  
 
Because study area 2 had more severe air quality issues across multiple pollutants, we took the AQI 
values for three primary pollutants with many measurement stations: nitrogen dioxide, ground-level 
ozone, and fine particulate matter. When data were available for at least two of these three pollutants (i.e., 
only one was allowed to be missing), we used the maximum AQI value as our measure of air pollution.  
 
From the weather data for study area 2 (which were in °F and inches), we constructed a combined 
precipitation/snow categorical variable, reflecting days with no rain and no snow, light rain (>0.0–0.5 in) 
or heavy rain (>0.5 in) but no snow, and light snow (>0.0–2.0 in) or heavy snow (>2.0 in). We also 
constructed a variable reflecting the difference from normal for maximum temperatures (°F).  
 
As universities can have a significant impact on pedestrian volumes, we identified the presence of 
universities near the pedestrian signals. Although “near-university” pedestrian volume locations were 
selected manually, most were within a 1,200-m (0.75 mi) radius of the center of each campus. (This was 
an enhancement of the work for study area 2 over the analysis in study area 1.) In study area 2, there were 
four major universities with large campuses: University of Utah, Brigham Young University, Weber State 
University, and Utah Valley University. For universities, we also inspected dates during main terms when 
classes were in session. From this we created a logical variable which was true for signals near 
universities on the days during university breaks (e.g., winter/holiday, spring, summer). This variable 
accounted for the low pedestrian volumes at signals near universities during the breaks.  
 
2.2.3 Count Station-Level Variables 
 
Recall our second objective, to measure variations in the air quality–traffic volume relationship across 
locations. We also collected built and social environment variables at each traffic count location. 
Information regarding population and employment density, commercial and residential land uses, transit 
stops, park coverage, schools, and places of worship were collected from the EPA’s Smart Location 
Database (US EPA, 2021). Similarly, sociodemographic attributes like average household size and 
median household income were obtained from the American Community Survey (ACS) 2016-2020 (US 
Census Bureau, 2022). 
 
Since we had built and social environment variables for each U.S. Census block group, we had to 
transform those variables into our spatial unit of analysis: traffic volume stations. For that we used an 
area-weighted averaging process. First, we created a 400-m (0.25-mi) circular buffer around each 
pedestrian signal, and then took the area-weighted average of the attribute for the Census block groups 
included in that buffer. A similar approach with a buffer of 2,000 m (1.25 mi) was used for the motor 
vehicle count locations. 
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2.2.4 Descriptive Statistics and Maps 
 
A map of the pedestrian signals, automobile traffic volume count stations, weather station, and air quality 
station for study area 1 is shown in Figure 2.1. Similarly, a map of the pedestrian signals, automobile 
traffic volume count stations, weather stations, and air quality stations in study area 2 are shown for each 
individual county in Figure 2.2 for better representation. The summary of descriptive statistics for all of 
the variables and all of the modes is shown in Table 2.3 for study area 1. The summary of descriptive 
statistics of the associated variable for study area 2 is shown for each mode (walking, driving, and transit) 
in Table 2.4, Table 2.5, and Table 2.6, respectively. 
 

 
Figure 2.1 Data collection locations in study area 1 (Cache County) 
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Figure 2.2 Data collection locations in study area 2, in Weber County (top left), Davis County 

(top right), Salt Lake County (bottom left), and Utah County (bottom right) 
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Table 2.3 Descriptive statistics, study area 1 
Variable Mean SD # % 
Multimodal traffic volumes     
Pedestrian volumes 
 (N = 27,157 = 39 locations × 730 days – missing data) 

379 1,033   

Automobile traffic volumes 
 (N = 3,987 = 6 stations × 730 days – missing data) 

12,489 8,410   

CVTD bus ridership 
 (N = 608 = 1 system × 730 days – Sundays – missing data) 

4,708 1,991   

Temporal variables (730 days)     
Day of Week: Weekday   522 71.5 
 Saturday   104 14.2 
 Sunday   104 14.2 
Holiday: True   24 3.3 
Season: Winter   180 24.7 
 Spring   184 25.2 
 Summer   184 25.2 
 Fall   182 24.9 
Precipitation: No rain / no snow   532 73.0 
 Light rain (1–25 mm)   117 16.0 
 Heavy rain (>25 mm)   2 0.3 
 Light snow (1–50 mm)   57 7.8 
 Heavy snow (>50 mm)   21 2.9 
Max temperature (°C) difference from average 0.04 4.73   
Air quality index: Green (AQI = 0–50)   626 85.7 
 Yellow (AQI = 51–100)   88 12.1 
 Orange (AQI = 101–150)   16 2.2 
Built and social environment variables 
 (39 pedestrian volume locations, ¼-mile buffer) 

    

Percentage of residential parcels  20.0 13.3   
Percentage of commercial parcels 33.1 17.1   
Percentage of vacant land 6.6 4.0   
Population density (1,000 people/mi2) 5.0 2.1   
Employment density (1,000 jobs/mi2) 9.5 6.3   
Intersection density (#/mi2) 88.0 37.1   
% 4-way intersections 44.6 21.4   
Number of bus stops 6.1 3.7   
Number of schools 0.2 0.5   
Park acreage 1.1 2.8   
Household income (median, $1,000)   37.4 9.0   
Car ownership (mean) 1.6 0.3   
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Table 2.4 Descriptive statistics (pedestrian volumes), study area 2 
Variable Mean SD # % 
Pedestrian volumes  
 (N = 951,701 = 1,435 locations × 730 days – missing data) 296 714 

  

Temporal variables (730 days)     
Day of week: Weekday   522 71.5 
 Saturday   104 14.2 
 Sunday   104 14.2 
Season: Winter   180 24.7 
 Spring   184 25.2 
 Summer   184 25.2 
 Fall   182 24.9 
Holiday: True   24 3.3 
Spatial-temporal variables (N = 635,830)     
Near university on break  
 (ref. = Not near university, not on break)   9,587 1.0 
Precipitation: No rain / no snow   691,103 72.6 
 Light rain (>0.0–0.5 in)   163,998 17.2 
 Heavy rain (>0.5 in)   16,216 1.7 
 Light snow (>0.0–2.0 in)   56,594 5.9 
 Heavy snow (>2.0 in)   23,790 2.5 
Max temperature (°F) difference from average 0.4 8.6   
Air quality index: Green (AQI = 0–50)   585,469 61.5 
 Yellow (AQI = 51–100)   338,064 35.5 
 Orange (AQI = 101–150)     28,168 3.0 
Built and social environment variables 
 (1,435 pedestrian volume locations, 400m buffer) 

    

Population density (people/acre) 7.6 4.7   
Employment density (jobs/acre) 7.5 9.4   
Employment and household entropy 0.7 0.2   
Street intersection density (#/mi2) 102.8 52.0   
Job access, by car (# within 45 min) 76,475 35,560   
Number of children (#/household) 0.8 0.4   
Number of workers (#/household) 1.6 0.7   
Vehicle ownership (cars/household) 1.9 0.4   
Median household income ($10,000s) 6.9 2.5   
Unemployment rate (%) 3.9 2.7   
Non-white or Hispanic race/ethnicity (%) 28.6 16.7   
Number of bus transit stops (#) 5.0 3.9   
Number of rail transit stops (#) 0.1 0.4   
Size of parks (acres) 10.0 42.4   
Number of schools (#) 0.4 0.7   
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Table 2.5 Descriptive statistics (automobile traffic volumes), study area 2 
Variable Mean SD # % 
Automobile traffic volumes 
 (N = 34,418 = 72 stations × 730 days – missing data) 66383 66816     
Temporal variables (730 days)     
Day of week: Weekday   522 71.5 
 Saturday   104 14.2 
 Sunday   104 14.2 
Season: Winter   180 24.7 
 Spring   184 25.2 
 Summer   184 25.2 
 Fall   182 24.9 
Holiday: True   24 3.3 
Spatial-temporal variables (N = 34,418)     
Precipitation: No rain / no snow   24,470 71.1 
 Light rain (>0.0–0.5 in)   6,412 18.6 
 Heavy rain (>0.5 in)   666 1.9 
 Light snow (>0.0–2.0 in)   1,988 5.8 
 Heavy snow (>2.0 in)   882 2.6 
Max temperature (°F) difference from average -0.2 9.0   
Air quality index: Green (AQI = 0–50)   21,703 63.1 
 Yellow (AQI = 51–100)   11,730 34.1 
 Orange (AQI = 101–150)     985 2.9 
Built and social environment variables 
 (72 automobile traffic volume locations, 2km buffer) 

    

Population density (people/acre) 4.3 3.4   
Employment density (jobs/acre) 3.1 3.1   
Employment and household entropy 0.6 0.1   
Street intersection density (intersections/mi2) 54.1 37.5   
Employment access, by automobile (jobs within 45 min) 60,070 36,488   
Number of children (children/household) 1.0 0.4   
Number of workers (workers/household) 1.6 0.3   
Vehicle ownership (cars/household) 2.2 0.3   
Median household income ($10,000s) 8.2 2.4   
Unemployment rate (%) 3.3 1.5   
Non-white or Hispanic race/ethnicity (%) 26.0 16.9   
Number of bus transit stops (#) 35.8 43.5   
Number of rail transit stops (#) 0.7 1.6   
Size of parks (acres) 93.8 149.6   
Number of schools (#) 4.6 4.2   

 
 



 15 

Table 2.6 Descriptive statistics (transit ridership), study area 2 
Variable Mean SD # % 
UTA TRAX rail ridership 
 (N = 719 = 1 system × 730 days – holidays – missing data) 46,508 16,172 

  

UTA FrontRunner rail ridership 
 (N = 616 = 1 system × 730 days – Sundays – holidays – missing data) 16,570 4,768 

  

Temporal variables (730 days)     
Day of week: Weekday   522 71.5 
 Saturday   104 14.2 
 Sunday   104 14.2 
Season: Winter   180 24.7 
 Spring   184 25.2 
 Summer   184 25.2 
 Fall   182 24.9 
Holiday: True   24 3.3 
Precipitation: No rain / no snow   542 74.3 
 Light rain (>0.0–0.5 in)   113 15.5 
 Heavy rain (>0.5 in)   11 1.5 
 Light snow (>0.0–2.0 in)   47 6.4 
 Heavy snow (>2.0 in)   16 2.2 
Max temperature (°F) difference from average 1.2 8.3   
Air quality index: Green (AQI = 0–50)   417 57.4 
 Yellow (AQI = 51–100)   290 39.9 
 Orange (AQI = 101–150)     20 2.8 
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2.3 Analysis Methods 
 
The three different modes (pedestrian, automobile, and bus/rail transit) being analyzed had datasets that 
were distinct in their locational representation. Pedestrian and automobile data covered multiple locations 
across two years, while bus/rail transit ridership had a single regional aggregate for two years. Because of 
this difference in the nature of datasets, we employed general regression modeling for bus/rail transit 
ridership and multilevel modeling for pedestrian and automobile traffic volumes. 
 
For bus/rail transit ridership, in line with the first objective to examine the relationship between air quality 
and traffic volumes, for each study area we estimated a simple regression model, as represented by Eq. 1. 
The dependent variable (𝑌𝑌𝑖𝑖𝑖𝑖) was the natural log of the daily total bus/rail transit ridership in each study 
area (only bus in study area 1; two types of rail in study area 2), and the independent variables (𝑥𝑥𝑖𝑖) were 
air quality, weather, and temporal controls.  
 
 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 + 𝑅𝑅𝑖𝑖        (1) 
 
Since the datasets for pedestrian and automobile traffic volumes covered multiple locations across a span 
of two years, multilevel modeling was an appropriate approach for our analyses. Multilevel models can 
adequately represent the two-level nature of our data: daily counts 𝑌𝑌𝑖𝑖𝑖𝑖 (level one), nested within locations 
(level two). Such models also allow clear specifications of variations in model coefficients at level one 
(across level two units 𝑖𝑖), including fixed and random intercepts (𝛽𝛽0𝑖𝑖), slopes (𝛽𝛽ℎ𝑖𝑖) for ℎ level-one 
variables (𝑥𝑥𝑖𝑖𝑖𝑖), and cross-level interactions in which level-two variables (𝑧𝑧𝑖𝑖) affect level-one slopes. In 
other words, multilevel models can represent variations in the air quality–traffic volume relationship 
(slope) across locations and due to locational characteristics. A simple multilevel model with one level-
one variable and level-one residuals 𝑅𝑅𝑖𝑖𝑖𝑖 is represented in the following Eq. 2:  
 
 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑅𝑅𝑖𝑖𝑖𝑖       (2) 
 
In line with the first objective to examine the relationship of air quality and traffic volume for each mode, 
we estimated separate multilevel models for pedestrian volumes and for automobile traffic volumes. The 
dependent variable (𝑌𝑌𝑖𝑖𝑖𝑖) was the natural log of the daily (pedestrian or automobile) traffic volume, and 
independent (level one) variables (𝑥𝑥ℎ𝑖𝑖𝑖𝑖) were air quality, weather, and temporal controls. Different 
specifications for air quality were considered, but the best-fitting and most intuitive results were found for 
dummy variables representing the green, yellow, and orange AQI categories (Table 2.2). For pedestrian 
and automobile models, we allowed the intercept (but not the slopes) to vary across locations. (Recall for 
bus/rail we resorted to general linear regression as we had aggregate public transit ridership data, but not 
for particular locations.) For pedestrian volumes (39 locations in study area 1, and 1,435 locations in 
study area 2), we used a random effects intercept model (Eq. 3), in which the intercept coefficient (𝛽𝛽0𝑖𝑖) 
varied randomly following a normal distribution for level-two residuals (𝑈𝑈0𝑖𝑖). For motor vehicle volumes 
in study area 1 (six locations), the few sites meant we used a fixed effects intercept model (Eq. 4), in 
which a different intercept coefficient was estimated for each station 𝑘𝑘. But the increased number of 
motor stations in study area 2 (72 locations) allowed us to use the random effects intercept model (Eq. 3).  
 
 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + ∑ 𝛽𝛽ℎ𝑥𝑥ℎ𝑖𝑖𝑖𝑖ℎ + 𝑅𝑅𝑖𝑖𝑖𝑖       (3a), where 
 𝛽𝛽0𝑖𝑖 = 𝛾𝛾00 + 𝑈𝑈0𝑖𝑖        (3b).  
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 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + ∑ 𝛽𝛽ℎ𝑥𝑥ℎ𝑖𝑖𝑖𝑖ℎ + 𝑅𝑅𝑖𝑖𝑖𝑖       (4a), where 
 𝛽𝛽0𝑖𝑖 = ∑ 𝛾𝛾0𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘          (4b), and 
 𝐷𝐷𝑘𝑘 is a dummy variable equal to 1 for station 𝑘𝑘 and 0 otherwise.  
 
To address the study’s second objective—exploring variations across locations in the effect of area-wide 
air pollution on multimodal traffic volumes—we first modified the first objective models and allowed 
slopes for the air quality dummy variables to vary across count stations. Again, for pedestrian volumes in 
both of the study areas, this was a random effects slope model (Eq. 5), in which the random coefficients 
were normally distributed. For automobile volumes in study area 1, this was a fixed effects slope model 
(Eq. 6), in which different coefficients were estimated for each station. For automobile traffic volumes in 
study area 2, this was a random effects slope model (Eq. 5) similar to that employed for pedestrian 
volumes. If the slopes were found to vary across locations—measured using likelihood-ratio tests versus 
the models for the first objective—we then tested whether 𝑔𝑔 level-two location characteristics (𝑧𝑧𝑔𝑔𝑖𝑖) were 
significant in predicting the intercept and air quality slope variations across locations. In the terminology 
of multilevel modeling, these effects are called cross-level interactions (𝛾𝛾𝑔𝑔ℎ), because they result in an 
interaction of a level-two variable (built or social environment) with a level-one variable (air quality). 
Only variables with significant interaction coefficients were retained in the final models. Due to the lack 
of public transit data across multiple locations (only system-level data), we could not employ the second 
objective models for bus/rail transit ridership analyses. 
 
 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + ∑ 𝛽𝛽ℎ𝑖𝑖𝑥𝑥ℎ𝑖𝑖𝑖𝑖ℎ + 𝑅𝑅𝑖𝑖𝑖𝑖       (5a), where 
 𝛽𝛽0𝑖𝑖 = 𝛾𝛾00 + ∑ 𝛾𝛾𝑔𝑔0𝑔𝑔 𝑧𝑧𝑔𝑔𝑖𝑖 + 𝑈𝑈0𝑖𝑖       (5b), and  
 𝛽𝛽ℎ𝑖𝑖 = 𝛾𝛾ℎ0 + ∑ 𝛾𝛾𝑔𝑔ℎ𝑔𝑔 𝑧𝑧𝑔𝑔𝑖𝑖 + 𝑈𝑈ℎ𝑖𝑖       (5c).  
 
 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑖𝑖 + ∑ 𝛽𝛽ℎ𝑖𝑖𝑥𝑥ℎ𝑖𝑖𝑖𝑖ℎ + 𝑅𝑅𝑖𝑖𝑖𝑖       (6a), where 
 𝛽𝛽0𝑖𝑖 = ∑ 𝛾𝛾0𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘          (6b),  
 𝛽𝛽ℎ𝑖𝑖 = ∑ 𝛾𝛾ℎ𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘          (6c), and  
 𝐷𝐷𝑘𝑘 is a dummy variable equal to 1 for station 𝑘𝑘 and 0 otherwise.  
 
Model estimation was performed using the “lme4” package in R (Bates et al., 2015).  
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3. RESULTS, STUDY AREA 1 (CACHE COUNTY) 
 
As defined in Chapter 2, we demarcated our study area into two regions. This chapter explains the model 
results for different modes in study area 1. First, we built a model for each mode (pedestrian volumes, 
automobile traffic volumes, and bus ridership) without locational parameters to meet our objective 1. Two 
additional models were then created to explain the locational variation of relationships between air quality 
and both pedestrian and automobile traffic volumes. Since we had the overall bus ridership for the region 
(not for specific stops or routes), we could not explain locational variations of the air quality and bus 
ridership relationship. Models specific to each mode are discussed in the sections below. 
 
3.1 Pedestrian Volumes 
 
Table 3.1 reports results of the random intercept model for pedestrian volumes. The coefficient estimates 
for both the yellow (β = -0.053, SE = 0.011, t = -4.916, p = <0.001) and orange air quality days (β = -
0.136, SE = 0.023, t = -5.929, p = <0.001) were negative and significant. This implies that pedestrian 
volumes decreased during episodes of poor air quality (compared with green days), especially on orange 
days (unhealthy for sensitive groups). The magnitude of decrease during orange days was significantly 
higher (12.7%) than that on yellow days (5.2%).  
 
Table 3.1 Pedestrian volumes, random intercept model 
Coefficients Estimate SE df t-statistic p-value 
Intercept 5.092 0.157 38.23 32.356 <0.001 
Day of week (ref. = Weekday)      
 Saturday -0.366 0.009 27105 -38.513 <0.001 
 Sunday -1.020 0.009 27105 -107.919 <0.001 
Holiday (ref. = No holiday) -0.914 0.019 27105 -49.317 <0.001 
Season (ref. = Winter)      
 Spring 0.266 0.011 27105 24.874 <0.001 
 Summer 0.373 0.010 27105 36.192 <0.001 
 Fall 0.361 0.011 27105 34.074 <0.001 
Precipitation (ref. = No rain / no snow)      
 Light rain -0.060 0.009 27105 -6.293 <0.001 
 Heavy rain -0.157 0.062 27105 -2.521 0.012 
 Light snow -0.259 0.013 27105 -19.657 <0.001 
 Heavy snow -0.341 0.020 27105 -16.968 <0.001 
Max temperature difference from average 0.007 0.001 27105 9.411 <0.001 
Air quality index (ref. = Green)      
 Yellow (AQI = 51–100) -0.053 0.011 27105 -4.916 <0.001 
 Orange (AQI = 101–150) -0.136 0.023 27105 -5.929 <0.001 
Notes: N = 27,157; # groups = 39; log-likelihood = -21,661; between-group variance = 0.963; 
residual variance = 0.286.  

 
Table 3.2 reports results of the random intercept and random slope model for pedestrian volumes. By 
estimating an earlier model (not shown), we found that there were significant random slopes for the air 
quality variables. A likelihood-ratio test found that the random intercept and slope model (log-likelihood 
= -21,656) was (marginally) significantly (χ2 = 9.924, df = 5, p = 0.077) better fitting than the random 
intercept only model (log-likelihood = -21,661). Therefore, we estimated several models, each testing 
cross-level interactions with air quality involving built and social environment variables. As shown in 
Table 3.2, there were significant interaction effects for three variables: the percentage of commercial 
parcels, the percentage of 4-way intersections and average car ownership. For the commercial land use 
variable, there was a positive and significant interaction term with yellow days (β = 0.001, SE = 0.001, t = 
2.072, p = 0.042) but not orange days. This implies that the negative effect of yellow air quality days on 
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pedestrian volumes was attenuated in places with more commercial land uses. For the intersection 
variable, there was a positive and significant interaction term with orange days (β = 0.003, SE = 0.001, t = 
2.004, p = 0.050) but not yellow days. This implies that the negative effect of orange air quality days on 
pedestrian volumes (Table 3.1) was attenuated in places with a greater share of 4-way intersections. For 
the car ownership variable, there was a negative and marginally significant interaction term with yellow 
days (β = -0.076, SE = 0.040, t = -1,935, p = 0.057). This implies that the negative effect of yellow air 
quality days on pedestrian volumes (Table 3.1) was enhanced in places with greater average household 
car ownership.  
 
Table 3.2 Pedestrian volumes, random intercept and random slope model 
Coefficients Estimate SE df t-statistic p-value 
Intercept -0.105 1.207 33.02 -0.087 0.931 
Day of week (ref. = Weekday)      
 Saturday -0.366 0.009 27066 -38.534 <0.001 
 Sunday -1.020 0.009 27063 -107.983 <0.001 
Holiday (ref. = No holiday) -0.914 0.019 27063 -49.341 <0.001 
Season (ref. = Winter)      
 Spring 0.266 0.011 27066 24.897 <0.001 
 Summer 0.373 0.010 27070 36.218 <0.001 
 Fall 0.361 0.011 27069 34.095 <0.001 
Precipitation (ref. = No rain / no snow)      
 Light rain -0.060 0.009 27064 -6.304 <0.001 
 Heavy rain -0.157 0.062 27063 -2.525 0.012 
 Light snow -0.260 0.013 27065 -19.678 <0.001 
 Heavy snow -0.341 0.020 27064 -16.976 <0.001 
Max temperature difference from average 0.007 0.001 27075 9.417 <0.001 
Air quality index (ref. = Green)      
 Yellow (AQI = 51–100) 0.008 0.087 69.73 0.096 0.924 
 Orange (AQI = 101–150) -0.170 0.195 54.95 -0.871 0.387 
Built and social environment variables      
Percentage of commercial parcels 0.007 0.007 32.15 0.877 0.387 
Population density (1,000 people/mi2) 0.322 0.071 29.76 4.532 <0.001 
Intersection density (#/mi2) 0.008 0.004 30.03 2.029 0.051 
% 4-way intersections 0.003 0.007 33.00 0.388 0.700 
Number of bus stops 0.080 0.035 29.65 2.253 0.032 
Number of schools -0.496 0.229 29.92 -2.172 0.038 
Household income (median, $1,000)   0.049 0.016 30.00 3.037 0.005 
Car ownership (mean) 0.239 0.411 31.42 0.582 0.564 
Cross-level interactions      
Yellow AQI with % commercial parcels 0.001 0.001 71.71 2.072 0.042 
Orange AQI with % commercial parcels 0.002 0.002 55.14 1.311 0.195 
Yellow AQI with % 4-way intersections 0.0003 0.001 69.94 0.606 0.546 
Orange AQI with % 4-way intersections 0.003 0.001 54.63 2.004 0.050 
Yellow AQI with car ownership -0.076 0.040 70.24 -1.935 0.057 
Orange AQI with car ownership -0.091 0.089 56.87 -1.020 0.312 
Notes: N = 27,157; # groups = 39; log-likelihood = -21,622; between-group variance = 0.408; 
residual variance = 0.285; random coefficient variance for yellow AQI = 0.001; random coefficient 
variance for orange AQI = 0.005.  
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3.1.1 Posterior Slopes 
 
Because cross-level interaction terms are difficult to interpret in any type of regression model and even 
more difficult when they affect random slope coefficients, we also calculated what are called “posterior 
slopes” (Snijders & Bosker, 2012). Since the random air quality coefficients are not estimated by the 
model (just their mean and standard deviation), we used empirical Bayes estimation to let the model and 
data give us the “best” estimate of each location’s slope coefficients. Refer to a multilevel modeling 
textbook (e.g., Snijders & Bosker, 2012) for details on this calculation. Since the air quality coefficients 
were also interacted with built and social environment variables, we then multiplied each location’s 
values for these level-two variables with their respective coefficients, and then added them to the random 
portion obtained through empirical Bayes estimation to get the total value of the posterior slopes for 
yellow and orange air quality days (vs. green days).  
 
Figure 3.1 plots these posterior slopes, first in a scatterplot (yellow vs. orange) and second in a combined 
plot versus AQI. The left portion of the figure shows how most locations had a more negative orange 
coefficient than yellow coefficient (below the diagonal in the lower left quadrant), and how the posterior 
slopes were positively correlated, which is expected since they are both conditional on the same data at 
each location. The right portion of the figure shows how air quality coefficients in the orange range (AQI 
= 101–150) were typically more extreme (most were more negative; some were more positive) than 
coefficients in the yellow range (AQI = 51–100). In both portions of Figure 3.1, it appears that only a 
couple of locations had positive coefficients for yellow or orange AQI.  
 

  

Figure 3.1 Figures showing pedestrian volume model posterior slopes for yellow and orange air quality 
levels (left: scatterplot; right: plot vs. AQI) 
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Figure 3.2 plots these posterior slopes for pedestrian volumes on a map for yellow (left) and orange 
(right) air quality days. In both cases, it appears that locations with positive (or smaller negative) 
coefficients tended to be concentrated along Main Street (running north–south) and in commercial areas 
(to the north and in downtown Logan). Locations with more negative coefficients seemed to be located in 
more peripheral areas, including in the northeast portion of the city, near the Utah State University 
campus.  
 

  
Figure 3.2 Maps showing pedestrian volume model posterior slopes for yellow (left) and orange (right) 

air quality levels 
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3.2 Automobile Traffic Volumes 
 
Table 3.3 reports the results of the fixed intercept model for automobile traffic volumes. One of the air 
quality variables (orange) was positively and significantly associated with automobile traffic volumes (β 
= 0.049, SE = 0.015, t = 3.333, p = 0.001). The positive association implies that driving increased (by 
5.1%) during unhealthy (orange) air quality days when compared with days with good (green) air quality. 
The coefficient for yellow air quality was not significantly different from zero, implying no detectable 
difference in automobile traffic volumes on yellow (moderate) versus green air quality days.  
 
Table 3.3 Automobile traffic volumes, fixed intercept model 
Coefficient Estimate SE t-statistic p-value 
Intercept (station 301) 9.060 0.008 1,207.460 <0.001 
 Difference for station 363 1.084 0.007 147.750 <0.001 
 Difference for station 510 -0.663 0.007 -91.996 <0.001 
 Difference for station 511 -0.400 0.007 -55.207 <0.001 
 Difference for station 620 0.219 0.007 29.726 <0.001 
 Difference for station 622 0.946 0.007 129.548 <0.001 
Day of week (ref. = Weekday)     
 Saturday -0.122 0.006 -19.753 <0.001 
 Sunday -0.614 0.006 -98.842 <0.001 
Holiday (ref. = No holiday) -0.320 0.012 -27.073 <0.001 
Season (ref. = Winter)     
 Spring 0.097 0.007 14.267 <0.001 
 Summer 0.135 0.007 19.693 <0.001 
 Fall 0.109 0.007 16.172 <0.001 
Precipitation (ref. = No rain / no snow)     
 Light rain -0.021 0.006 -3.367 0.001 
 Heavy rain -0.024 0.039 -0.620 0.535 
 Light snow -0.062 0.008 -7.399 <0.001 
 Heavy snow -0.123 0.013 -9.742 <0.001 
Max temperature difference from average 0.000 0.000 0.348 0.728 
Air quality index (ref. = Green)     
 Yellow (AQI = 51–100) -0.003 0.007 -0.474 0.636 
 Orange (AQI = 101–150) 0.049 0.015 3.333 0.001 
Notes: N = 3,987; adjusted R2 = 0.963.  
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Table 3.4 reports results of the fixed intercept and fixed slope model for automobile traffic volumes, 
which involved interaction terms included between the air quality categories and each station. None of the 
air quality–station interaction terms were significant (p > 0.10), which implies that there was no 
significant difference in the relationship between air quality and automobile traffic volumes across the six 
count stations. Because no significant slope variation was detected, we did not estimate a subsequent 
model to predict this variation from built and social environment variables. 
 
Table 3.4 Automobile traffic volumes, fixed intercept and fixed slope model 
Coefficients Estimate SE t-statistic p-value 
Intercept (station 301) 9.060 0.008 1,170.678 <0.001 
 Difference for station 363 1.084 0.008 136.704 <0.001 
 Difference for station 510 -0.660 0.008 -84.793 <0.001 
 Difference for station 511 -0.399 0.008 -51.036 <0.001 
 Difference for station 620 0.217 0.008 27.182 <0.001 
 Difference for station 622 0.943 0.008 120.087 <0.001 
Day of week (ref. = Weekday)     
 Saturday -0.122 0.006 -19.745 <0.001 
 Sunday -0.614 0.006 -98.815 <0.001 
Holiday (ref. = No holiday) -0.320 0.012 -27.074 <0.001 
Season (ref. = Winter)     
 Spring 0.097 0.007 14.302 <0.001 
 Summer 0.135 0.007 19.721 <0.001 
 Fall 0.109 0.007 16.205 <0.001 
Precipitation (ref. = No rain / no snow)     
 Light rain -0.021 0.006 -3.355 0.001 
 Heavy rain -0.024 0.039 -0.618 0.536 
 Light snow -0.062 0.008 -7.364 <0.001 
 Heavy snow -0.123 0.013 -9.733 <0.001 
Max temperature difference from average 0.000 0.000 0.360 0.719 
Air quality index (ref. = Green)     
 Yellow (AQI = 51–100) (station 301) -0.011 0.016 -0.704 0.482 
  Difference for station 363 0.004 0.022 0.167 0.868 
  Difference for station 510 -0.008 0.022 -0.352 0.725 
  Difference for station 511 0.004 0.022 0.183 0.855 
  Difference for station 620 0.019 0.022 0.861 0.390 
  Difference for station 622 0.033 0.023 1.412 0.158 
 Orange (AQI = 101–150) (station 301) 0.079 0.036 2.174 0.030 
  Difference for station 363 -0.031 0.051 -0.604 0.546 
  Difference for station 510 -0.076 0.050 -1.534 0.125 
  Difference for station 511 -0.058 0.050 -1.153 0.249 
  Difference for station 620 -0.018 0.050 -0.367 0.714 
  Difference for station 622 0.009 0.050 0.184 0.854 
Notes: N = 3,987; adjusted R2 = 0.963.  
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3.3 Bus Transit Ridership 
 
Table 3.5 reports the results of the linear regression model for bus ridership. Note that we did not run a 
multilevel model for our public transportation data because we did not have location-specific data, only 
system-level bus ridership. Since the transit service provider (CVTD) did not operate during Sundays, this 
variable’s estimates are missing from the model. The estimates for both the yellow and orange air quality 
days were found to be negative but were not statistically significant.  
 
Table 3.5 CVTD bus transit ridership, linear regression model 
Coefficients Estimate SE t-statistic p-value 
Intercept 8.686 0.026 332.388 <0.001 
Day of week (ref. = Weekday)     
 Saturday -1.245 0.025 -49.883 <0.001 
Holiday (ref. = No holiday) -1.238 0.066 -18.829 <0.001 
Season (ref. = Winter)     
 Spring -0.078 0.031 -2.512 0.012 
 Summer -0.394 0.030 -13.292 <0.001 
 Fall 0.057 0.031 1.839 0.066 
Precipitation (ref. = No rain / no snow)     
 Light rain -0.032 0.027 -1.185 0.237 
 Heavy rain 0.144 0.231 0.626 0.532 
 Light snow -0.069 0.037 -1.843 0.066 
 Heavy snow -0.041 0.058 -0.697 0.486 
Max temperature difference from average 0.000 0.002 0.065 0.949 
Air quality index (ref. = Green)     
 Yellow (AQI = 51–100) -0.017 0.031 -0.556 0.578 
 Orange (AQI = 101–150) -0.075 0.063 -1.186 0.236 
Notes: N = 608; adjusted R2 = 0.836. 
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4. RESULTS, STUDY AREA 2 (WASATCH FRONT) 
 
Building from the models tested for study area 1, we refined them (by adding some new and some 
different location-specific variables) for study area 2. The approach taken was similar to that used for 
study area 1. We first estimated a model for each mode (pedestrian volumes, automobile traffic volumes, 
and rail ridership), then added locational attributes when possible, and finally graphically analyzed the 
locational distribution of relationships between air quality and traffic volumes (pedestrian and 
automobile). Since we had the overall rail transit ridership for the region (for two different rail systems, 
but not for specific stops or routes), we could not explain locational variations of the air quality and rail 
ridership relationship.   
 
4.1 Pedestrian Volumes 
 
Table 4.1 reports results of the random intercept model for pedestrian volumes in study area 2 (Wasatch 
Front region). The coefficient estimate for orange air quality days (β = -0.113, SE = 0.003, t = -32.302, p 
< 0.001) was negative and significant, although the coefficient for yellow air quality days (β = 0.006, SE 
= 0.001, t = 4.967, p < 0.001) was positive and significant, and of a small magnitude. This implies that, on 
average, pedestrian volumes increased a little on yellow moderately poor air quality days (an increase of 
0.6%) but decreased substantially during episodes of orange unhealthy air quality (a decrease of 10.6%), 
when compared with green “good” days. The results are similar to those from study area 1 for orange 
days, but not for yellow days, indicating a potential non-linear or threshold-based relationship between air 
pollution and walking.  
 
Table 4.1 Pedestrian volumes, random intercept model 
Coefficients Estimate SE df t-statistic p-value 
Intercept 4.611 0.035 1438 133.205 <0.001 
Day of week (ref. = Weekday)      
 Saturday -0.373 0.002 950253 -230.515 <0.001 
 Sunday -0.832 0.002 950253 -511.845 <0.001 
Season (ref. = Winter)      
 Spring 0.291 0.002 950255 178.329 <0.001 
 Summer 0.314 0.002 950258 182.944 <0.001 
 Fall 0.279 0.002 950257 170.366 <0.001 
Holiday (ref. = No holiday) -0.654 0.003 950252 -204.299 <0.001 
Near university on break  
 (ref. = Not near university, not on break) 

-0.728 0.007 950477 -107.440 <0.001 

Precipitation (ref. = No rain / no snow)      
 Light rain -0.043 0.002 950255 -27.481 <0.001 
 Heavy rain -0.064 0.004 950254 -14.593 <0.001 
 Light snow -0.220 0.003 950254 -86.468 <0.001 
 Heavy snow -0.414 0.004 950256 -111.318 <0.001 
Max temperature difference from average 0.0046 0.0001 950301 62.157 <0.001 
Air quality index (ref. = Green)      
 Yellow (AQI = 51–100) 0.006 0.001 950261 4.967 <0.001 
 Orange (AQI = 101–150) -0.113 0.003 950254 -32.302 <0.001 
Notes: N = 951,701; # groups = 1,435; log-likelihood = -769,611; between-group variance = 1.72 
residual variance = 0.29.  
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Table 4.2 reports results of the random intercept and random slope model for pedestrian volumes in the 
Wasatch Front. By estimating a model (not shown), we found there were significant random slopes for the 
air quality variables. A likelihood-ratio test found that the random intercept and slope model (log-
likelihood = -765,326) was significantly better fitting than the random intercept only model (log-
likelihood = -769,532). Therefore, we estimated several models, each testing cross-level interactions with 
air quality involving built and social environment variables.  
 
As shown in Table 4.2, several built and social environment variables had significant and positive 
interactions with the yellow and/or orange air quality variables: employment density (orange only), 
employment and household entropy (yellow and orange), number of children (yellow and orange), 
unemployment rate (yellow only), and near a university (orange only). Given the results from Table 4.1, 
this means that there were even higher pedestrian volumes at signalized intersections on yellow air quality 
days (the positive association was amplified) in places with greater mixing of jobs and residents, and in 
neighborhoods with greater unemployment and more children per household. Conversely, the negative 
effect of orange air quality days on pedestrian volumes was attenuated (i.e., less of a decrease in walking) 
in places with greater job density, a higher mix of jobs and residents, near universities, and in 
neighborhoods with more children per household.  

Similarly, some results in Table 4.2 showed built/social environment variables having significant and 
negative interactions with the air quality variables: street intersection density (yellow and orange), job 
access by car (yellow and orange), the number of workers (yellow and orange), the percentage of people 
of non-white or Hispanic race/ethnicity (yellow and orange), the number of rail transit stops (yellow 
only), and the number of schools (yellow and orange). This means that, on yellow (compared with green) 
air quality days, places with these characteristics—with more intersections, greater job access by 
automobile, more rail transit stops, more schools, and neighborhoods with more workers per household 
and a larger share of non-white or Hispanic populations—experienced smaller increases or even decreases 
in pedestrian volumes. Similarly, pedestrian volumes decreased more (the negative orange association in 
Table 4.1 was stronger) on orange air quality days at signalized intersections in these same kinds of places 
than they did elsewhere.  

Table 4.2 Pedestrian volumes, random intercept and random slope model 
Coefficients Estimate SE df t-statistic p-value 
Intercept 2.472 0.251 1426 9.856 <0.001 
Day of week (ref. = Weekday)      
 Saturday -0.372 0.002 948054 -231.640 <0.001 
 Sunday -0.832 0.002 947697 -514.947 <0.001 
Season (ref. = Winter)      
 Spring 0.288 0.002 948809 177.276 <0.001 
 Summer 0.311 0.002 949405 181.797 <0.001 
 Fall 0.278 0.002 948578 170.952 <0.001 
Holiday (ref. = No holiday) -0.653 0.003 948136 -205.199 <0.001 
Near university on break  
 (ref. = Not near university, not on break) 

-0.715 0.007 948293 -101.007 <0.001 

Precipitation (ref. = No rain / no snow)      
 Light rain -0.043 0.002 948102 -27.935 <0.001 
 Heavy rain -0.065 0.004 947789 -14.858 0.012 
 Light snow -0.221 0.003 948035 -87.373 <0.001 
 Heavy snow -0.419 0.004 948037 -113.170 <0.001 
Max temperature difference from average 0.005 0.0001 948690 62.865 <0.001 
Air quality index (ref. = Green)      
 Yellow (AQI = 51–100) 0.088 0.022 1374 3.926 <0.001 
 Orange (AQI = 101–150) -0.052 0.058 1329 -0.900 0.368 
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(Table 4.2 continued) 
      
Built and social environment variables      
Population density (people/acre) 0.076 0.006 1420 11.905 <0.001 
Employment density (jobs/acre) 0.034 0.003 1420 9.877 <0.001 
Employment and household entropy 0.991 0.192 1423 5.152 <0.001 
Street intersection density (#/mi2) 0.003 0.001 1421 4.965 <0.001 
Job access, by car (# within 45 min) -0.0000016 0.0000009 1422 -1.813 0.070 
Number of children (#/household) 0.030 0.089 1425 0.333 0.739 
Number of workers (#/household) 0.080 0.047 1419 1.703 0.089 
Median household income ($10,000s) -0.056 0.014 1419 -3.868 <0.001 
Unemployment rate (%) 0.018 0.010 1420 1.869 0.062 
Non-white or Hispanic race/ethnicity (%) 0.002 0.002 1426 1.273 0.203 
Number of bus transit stops (#) 0.085 0.007 1419 12.081 <0.001 
Number of rail transit stops (#) 0.364 0.063 1420 5.792 <0.001 
Number of schools (#) 0.166 0.033 1420 4.983 <0.001 
Near a university 0.541 0.202 1420 2.678 0.008 
Cross-level interactions      
Yellow AQI w/ Employment density -0.0004 0.0004 1351 -1.027 0.304 
Orange AQI w/ Employment density 0.002 0.001 1320 2.009 0.045 
Yellow AQI w/ Employ./house. entropy 0.037 0.021 1381 1.708 0.088 
Orange AQI w/ Employ./house. entropy 0.144 0.055 1326 2.606 0.009 
Yellow AQI w/ Street intersection density -0.0001 0.0001 1347 -1.845 0.065 
Orange AQI w/ Street intersection density -0.0004 0.0002 1293 -2.474 0.013 
Yellow AQI w/ Job access, by car -0.0000005 0.0000001 1357 -5.084 <0.001 
Orange AQI w/ Job access, by car -0.0000010 0.0000003 1322 -3.994 <0.001 
Yellow AQI w/ Number of children 0.042 0.009 1385 4.682 <0.001 
Orange AQI w/ Number of children 0.063 0.023 1325 2.762 0.006 
Yellow AQI w/ Number of workers -0.029 0.006 1366 -5.174 <0.001 
Orange AQI w/ Number of workers -0.032 0.014 1335 -2.248 0.025 
Yellow AQI w/ Unemployment rate 0.002 0.001 1359 1.833 0.067 
Orange AQI w/ Unemployment rate 0.004 0.003 1291 1.237 0.216 
Yellow AQI w/ Non-white or Hispanic -0.001 0.0002 1356 -6.006 <0.001 
Orange AQI w/ Non-white or Hispanic -0.001 0.0005 1300 -2.659 0.008 
Yellow AQI w/ Rail transit stops -0.016 0.007 1333 -2.217 0.027 
Orange AQI w/ Rail transit stops 0.003 0.019 1250 0.166 0.869 
Yellow AQI w/ Schools -0.025 0.004 1353 -6.309 <0.001 
Orange AQI w/ Schools -0.066 0.010 1291 -6.677 <0.001 
Yellow AQI w/ Near a university 0.020 0.024 1402 0.822 0.411 
Orange AQI w/ Near a university 0.195 0.063 1398 3.087 0.002 
Notes: N = 951,701; # groups = 1,435; log-likelihood = -764,851; between-group variance = 0.790; 
residual variance = 0.288; random coefficient variance for yellow AQI = 0.009; random coefficient 
variance for orange AQI = 0.056.  
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4.1.1 Posterior Slopes 
 
We calculated posterior slopes for the pedestrian volume model for study area 2 in a similar approach as 
discussed in the pedestrian results section of Chapter 3. We then plotted these posterior slopes in Figure 
4.1, first in a scatterplot (yellow vs. orange) and second in a combined plot versus AQI. The left portion 
of the figure shows how: (first) about slightly less than half of the study locations (43%) had negative 
coefficients for yellow air quality days; (second) most of the locations (71%) had negative coefficients on 
orange air quality days; and (third) the posterior slopes for yellow and orange air quality days were 
positively correlated (0.91). The right portion of the figure shows how air quality coefficients in the 
orange range (AQI = 101–150) are distributed more widely but also more negatively, compared with the 
coefficients in the yellow range (AQI = 51–100).  
 

  

Figure 4.1 Figures showing pedestrian volume model posterior slopes for yellow and orange air quality 
levels (left: scatterplot; right: plot vs. AQI) 

 
The posterior slopes for yellow and orange air quality levels for pedestrian volumes are mapped in the 
figures below. Since the number of signals in the pedestrian volume models was high, each map is 
divided by county. Figure 4.2 plots pedestrian model posterior slopes on a map for yellow (left) and 
orange (right) air quality days in Weber County and Davis County. Figure 4.3 plots pedestrian model 
posterior slopes on a map for yellow (left) and orange (right) air quality days in Salt Lake County and 
Utah County. 
 
Overall, we can notice that there are fewer locations with positive slopes (green dots) and more locations 
with stronger negative slopes (brown dots) on orange “unhealthy” days, compared with yellow 
“moderate” days. Some regional differences are also apparent. There are seemingly more locations with 
decreases in walking (brown dots) on yellow and orange air quality days in Salt Lake County, and more 
locations with increases in walking (green dots) in Utah County. This is exemplified by the increases seen 
in downtown Provo (Utah County) compared with the decreases seen in downtown Salt Lake City (Salt 
Lake County) on orange air quality days.  
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Figure 4.2 Maps showing pedestrian volume model posterior slopes for yellow (left) and orange (right) 

air quality levels in Weber County (top) and Davis County (bottom) 
 



 30 

  

  
Figure 4.3 Maps showing pedestrian volume model posterior slopes for yellow (left) and orange (right) 

air quality levels in Salt Lake County (top) and Utah County (bottom) 
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4.2 Automobile Traffic Volumes 
 
Table 4.3 reports results of the random intercept model for automobile traffic volumes across the Wasatch 
Front. One of the air quality variables (yellow) was positively and (marginally) significantly associated 
with traffic volumes (β = 0.007 SE = 0.004, t = 1.801, p = 0.072). The positive association implies that 
driving increased by around 0.7% during moderate (yellow) air quality days when compared with days 
with good (green) air quality. The coefficient for orange air quality was negative but very small and not 
statistically significantly different from zero (β = -0.001, SE = 0.011, t = -0.082, p = 0.934). Given the 
difference, this indicates a presence of a non-linear relationship between air quality and automobile traffic 
volumes in study area 2.  
 
Table 4.3 Automobile traffic volumes, random intercept model 
Coefficients Estimate SE df t-statistic p-value 
Intercept 10.580 0.139 71 76.059 <0.001 
Day of week (ref. = Weekday)      
 Saturday -0.117 0.005 34333 -24.335 <0.001 
 Sunday -0.435 0.005 34333 -89.405 <0.001 
Season (ref. = Winter)      
 Spring 0.071 0.005 34335 14.536 <0.001 
 Summer 0.147 0.005 34334 27.422 <0.001 
 Fall 0.080 0.005 34333 15.968 <0.001 
Holiday (ref. = No holiday) -0.293 0.010 34333 -30.410 <0.001 
Precipitation (ref. = No rain / no snow)      
 Light rain -0.019 0.005 34333 -4.254 <0.001 
 Heavy rain -0.052 0.012 34333 -4.179 <0.001 
 Light snow -0.065 0.008 34333 -8.494 <0.001 
 Heavy snow -0.137 0.011 34333 -12.416 <0.001 
Max temperature difference from average -0.0014 0.0002 34345 -6.328 <0.001 
Air quality index (ref. = Green)      
 Yellow (AQI = 51–100) 0.007 0.004 34334 1.801 0.072 
 Orange (AQI = 101–150) -0.001 0.011 34333 -0.082 0.934 
Notes: N = 34,418 # groups = 72; log-likelihood = -8,535; between-group variance = 1.39; 
residual variance = 0.094.  

 
Table 4.4 reports results of the random intercept and random slope model for motor vehicle volumes 
along the Wasatch Front. By estimating a model (not shown), we found there were significant random 
slopes for the air quality variables. A likelihood-ratio test found that the random intercept and slope 
model (log-likelihood = -8,239) was significantly better fitting than the random intercept only model (log-
likelihood = -8,476). Therefore, we estimated several models, each testing cross-level interactions with air 
quality involving built and social environment variables. As shown in Table 4.4, there were significant 
interaction effects for two variables.  
• For the unemployment rate, there was a negative and marginally significant interaction term with 

yellow air quality days (β = -0.013, SE = 0.008, t = -1.760, p = 0.085); the interaction for orange days 
was also negative but not significant (β = -0.022, SE = 0.017, t = -1.272, p = 0.210). This implies that 
the positive effect of yellow air quality days on automobile traffic volumes (see Table 4.3) was 
attenuated in places with higher unemployment rates. In other words, places with higher 
unemployment rates were more likely to see less driving on days with moderate (yellow) air quality.  
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• For non-white or Hispanic race/ethnicity, there was a negative and significant interaction term with 
yellow air quality days (β = -0.001, SE = 0.001, t = -2.029, p = 0.049); the interaction for orange days 
was also negative but barely not significant (β = -0.003, SE = 0.002, t = -1.633, p = 0.110). Similarly, 
this finding suggests that places with greater shares of populations identifying as non-white or 
Hispanic were less likely to see increased driving and more likely to see driving reduced on days with 
moderately poor air quality.  

 
Table 4.4 Automobile traffic volumes, random intercept and random slope model 
Coefficients Estimate SE df t-statistic p-value 
Intercept 6.745 0.688 76 9.803 <0.001 
Day of week (ref. = Weekday)      
 Saturday -0.117 0.005 34217 -24.579 <0.001 
 Sunday -0.435 0.005 34210 -90.114 <0.001 
Season (ref. = Winter)      
 Spring 0.071 0.005 34290 14.714 <0.001 
 Summer 0.146 0.005 34302 27.325 <0.001 
 Fall 0.080 0.005 34247 16.121 <0.001 
Holiday (ref. = No holiday) -0.294 0.010 34220 -30.806 <0.001 
Precipitation (ref. = No rain / no snow)      
 Light rain -0.020 0.005 34229 -4.400 <0.001 
 Heavy rain -0.044 0.012 34217 -3.608 0.012 
 Light snow -0.067 0.008 34225 -8.775 <0.001 
 Heavy snow -0.141 0.011 34226 -12.884 <0.001 
Max temperature difference from average -0.0013 0.0002 34235 -6.098 <0.001 
Air quality index (ref. = Green)      
 Yellow (AQI = 51–100) 0.105 0.027 45 3.807 <0.000 
 Orange (AQI = 101–150) 0.165 0.063 44 2.626 0.012 
Built and social environment variables      
Employment and household entropy 4.856 1.055 72 4.603 <0.000 
Unemployment rate (%) 0.177 0.089 68 1.992 0.050 
Non-white or Hispanic race/ethnicity (%) 0.010 0.008 69 1.276 0.206 
Cross-level interactions      
Yellow AQI w/ Unemployment rate -0.013 0.008 44 -1.760 0.085 
Orange AQI w/ Unemployment rate -0.022 0.017 42 -1.272 0.210 
Yellow AQI w/ Non-white or Hispanic -0.001 0.001 44 -2.029 0.049 
Orange AQI w/ Non-white or Hispanic -0.003 0.002 42 -1.633 0.110 
Notes: N = 34,418; # groups = 72; log-likelihood = -8,303, between-group variance = 1.088; 
residual variance = 0.092; random coefficient variance for yellow AQI = 0.007; random 
coefficient variance for orange AQI = 0.033.  
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4.2.1 Posterior Slopes 
 
Figure 4.4 contains plots of the posterior slopes for yellow and orange air quality levels. The left portion 
of the figure shows that while the majority of locations were clustered near zero for yellow days and 
slightly below zero for orange days, there were several locations with much stronger positive coefficients 
for both yellow and orange air quality days. Also, the posterior slopes were positively correlated (0.94), 
which is expected since they are both conditional on the same data at each location. The right portion of 
the figure shows how air quality coefficients in the orange range (AQI = 101–150) were typically more 
extreme (mostly more positive; some were more negative) than coefficients in the yellow range (AQI = 
51–100). It also shows that, despite the mean positive yellow coefficient and insignificant orange 
coefficient in Table 4.3, median locations actually had just barely negative coefficients on yellow days 
and more noticeably negative coefficients on orange days.  
 

  

Figure 4.4 Figures showing automobile traffic volume model posterior slopes for yellow and orange air 
quality levels (left: scatterplot; right: plot vs. AQI) 
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The posterior slopes for yellow and orange air quality levels for automobile traffic volumes are mapped in 
the figures below. Figure 4.5 plots posterior slopes for Weber County and Davis County, while Figure 4.6 
plots posterior slopes for Salt Lake County and Utah County. In Salt Lake County, very little difference is 
seen between yellow and orange days. In Weber, Davis, and Utah counties, a few more locations have 
negative coefficients (brown dots) on orange days than they do on yellow days. Utah County contains 
most of the locations where the positive coefficient increased greatly from yellow to orange days. Only a 
few spatial patterns are visible. Locations with more positive yellow/orange coefficients tended to be 
located on the periphery (especially to the east and northeast) of urban areas like Ogden, Salt Lake City, 
and in Utah County. These sites tended to be on highways on the way to mountains, including skiing, 
hiking, and recreation areas. This could reflect a trend of people driving to escape urban valley air 
pollution.  
 

  
Figure 4.5 Maps showing automobile traffic volume model posterior slopes for yellow (left) and orange 

(right) air quality levels in Weber County and Davis County 
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Figure 4.6 Maps showing automobile traffic volume model posterior slopes for yellow (left) and orange 

(right) air quality levels in Salt Lake County (top) and Utah County (bottom) 
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4.3 Rail Transit Ridership 
 
Table 4.5 reports results of the model for UTA TRAX light-rail ridership. The coefficient estimates for 
both yellow air days (β = -0.061, SE = 0.065, t = -0.947, p = 0.344) and orange air days (β = -0.178, SE = 
0.180, t = -0.988, p = 0.323) were negative but insignificant. Although the data showed a roughly 6% 
decrease and 16% decrease in TRAX light-rail ridership on days with “moderate” and “unhealthy” air 
pollution, these could not be statistically distinguished from zero with high confidence. Similarly, Table 
4.6 reports results of the model for UTA FrontRunner commuter rail ridership. The coefficient estimates 
for both yellow air days (β = -0.004, SE = 0.015, t = -0.260, p = 0.795) and orange air days (β = -0.018, 
SE = 0.040, t = -0.462, p = 0.644) were again negative but not significant, and with a lower magnitude 
(0.4% and 1.8% decreases, respectively) for FrontRunner than for TRAX. Overall, although the data 
show a small (for FrontRunner) to moderate (for TRAX) decrease in rail transit ridership on days with 
poor air quality (and greater decreases on orange as compared with yellow air days), there was not enough 
confidence to say that these were not due to random chance. As a reminder, due to the regional nature of 
transit data, we could not study variations in these relationships across different locations. 
 
Table 4.5 UTA TRAX transit ridership, ordinary regression model 
Coefficients Estimate SE t-statistic p-value 
Intercept 10.964 0.072 151.587 <0.001 
Day of week (ref. = Weekday)     
 Saturday -0.475 0.082 -5.807 <0.001 
 Sunday -1.105 0.081 -13.574 <0.001 
Season (ref. = Winter)     
 Spring -0.056 0.082 -0.683 0.495 
 Summer -0.203 0.086 -2.350 0.019 
 Fall 0.094 0.084 1.114 0.266 
Holiday (ref. = No holiday) -2.924 0.185 -15.779 <0.001 
Precipitation (ref. = No rain / no snow)     
 Light rain -0.075 0.082 -0.914 0.361 
 Heavy rain 0.006 0.245 0.025 0.980 
 Light snow -0.006 0.124 -0.052 0.959 
 Heavy snow 0.452 0.213 2.122 0.034 
Max temperature difference from average 0.009 0.004 2.507 0.012 
Air quality index (ref. = Green)     
 Yellow (AQI = 51–100) -0.061 0.065 -0.947 0.344 
 Orange (AQI = 101–150) -0.178 0.180 -0.988 0.323 
Notes: N = 719; adjusted R2 = 0.374. 

 



 37 

Table 4.6 UTA FrontRunner transit ridership, ordinary regression model 
Coefficients Estimate SE t-statistic p-value 
Intercept 9.838 0.016 615.082 <0.001 
Day of week (ref. = Weekday)     
 Saturday -0.861 0.017 -50.411 <0.001 
Season (ref. = Winter)     
 Spring -0.059 0.019 -3.183 0.002 
 Summer -0.066 0.019 -3.401 0.001 
 Fall 0.094 0.019 4.976 0.000 
Holiday (ref. = No holiday) -1.213 0.039 -31.225 <0.001 
Precipitation (ref. = No rain / no snow)     
 Light rain 0.009 0.018 0.517 0.605 
 Heavy rain 0.001 0.051 0.016 0.987 
 Light snow -0.006 0.028 -0.226 0.821 
 Heavy snow 0.039 0.050 0.775 0.439 
Max temperature difference from average 0.002 0.001 2.012 0.045 
Air quality index (ref. = Green)     
 Yellow (AQI = 51–100) -0.004 0.015 -0.260 0.795 
 Orange (AQI = 101–150) -0.018 0.040 -0.462 0.644 
Notes: N = 616; adjusted R2 = 0.849. 
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5. DISCUSSION 
 
5.1 Objective 1: Modal Differences in the Effects of Area-Wide Air 

Pollution on Traffic Volumes 
 
In line with the first objective of our study—to measure the effects of area-wide air pollution on 
multimodal traffic volumes and study how these effects differ by mode, by building separate models for 
walking, driving, and transit to observe the difference in effects across mode—we ran multilevel models 
for pedestrian volumes, automobile traffic volumes, and bus/rail transit ridership. The model results are 
discussed in two different subsections, one for each study area.  
 
5.1.1 Study Area 1: Cache County 
 
The results obtained from our models in study area 1 (Table 3.1, Table 3.3, and Table 3.5) shed light on 
the aggregate effects of area-wide air quality on multimodal traffic volumes (the study’s first objective), 
specifically automobile and pedestrian volumes and bus ridership. We found a general decrease in 
walking and an increase in driving on days with higher levels of air pollution, while our results showed no 
significant change in bus ridership. For orange days (AQI = 101–150, unhealthy for sensitive groups), an 
increase of 5.1% in automobile volumes and a decrease of 12.7% in pedestrian volumes are expected 
compared with green days. Even on yellow days (AQI = 51–100, moderate), the models predict a 5.2% 
decrease in walking. This could possibly be explained by a tendency of active travelers to avoid exposing 
themselves to outdoor air pollution by switching from walking (or walking plus public transportation) to 
driving, an encapsulated mode of travel with sometimes lower exposure to air pollution, at least in terms 
of minutes. In addition, there could be a reduction in recreational trips made by active modes such as 
running or visiting parks.  
 
5.1.2 Study Area 2: Wasatch Front 
 
In the case of study area 2 (Table 4.1, Table 4.3, Table 4.5, and Table 4.6), our analysis reports smaller 
magnitude changes in pedestrian volumes than were observed in study area 1. On average, pedestrian 
volumes decreased by 10.6% on orange days and actually increased slightly (by 0.6%) on yellow days. 
Also, automobile traffic volumes increased by only around 0.7% on yellow days, and there was no 
significant increase or decrease (on average) on orange days. However, follow-up analysis showed that 
more locations had decreases in automobile traffic volumes than increases on “unhealthy” orange air 
quality days (Figure 4.4). Although our models found general decreases in rail transit ridership for both of 
UTA’s TRAX and FrontRunner systems on yellow days and stronger decreases on orange days, the 
decreases were not statistically significant.  
 
These results suggest overall decreases in travel during episodes of area-wide air pollution, either by 
people foregoing trips or time shifting them to other less polluted days. This result could reflect the 
effects of air quality alerts (i.e., in news media and on variable message signs), as well as options for 
teleworking. The simultaneous decrease in walking and decrease in rail transit ridership (even if not 
significant) is a reasonable finding since many, if not most, public transit riders are pedestrians when 
going to and from transit stops and stations. The mixed results for automobile traffic volumes (small 
decreases/increases, with large variations in different locations), when taken alongside pedestrian and trail 
transit findings, potentially suggest that (like in study area 1) some “risk averse” travel behavior responses 
(Noonan, 2014) to elevated air pollution levels. Some people, in some places, may switch modes from 
walking to driving in order to reduce their exposure to air pollution.  
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5.2 Objective 2: Locational Variations in Relationships of Air 
Pollution with Traffic Volumes 

 
In line with the second objective of our study—to explore locational variations in the effects of area-wide 
air pollution on multimodal traffic volumes by using multilevel modeling to represent the locational 
variations in each mode-specific model—we introduced cross-level interaction variables in the multilevel 
models. As transit ridership was not available for specific locations within the region (only aggregated for 
each study area), we could not study the effect of location on the relationship between air quality and 
transit ridership. We again discuss findings for study area 1 first, followed by study area 2.  
 
5.2.1 Study Area 1: Cache County 
 
In study area 1, we looked at the effect of location on the relationship between air quality and multimodal 
traffic volumes (the study’s second objective), specifically pedestrian and automobile traffic volumes.  
 
For pedestrian volumes, we found significant associations of the percentage of commercial land uses, the 
percentage of four-way intersections, and average car ownership with the slope of the air quality 
coefficients (Table 3.2). The positive interactions between yellow days and the percent of commercial 
parcels, and between orange days and the percent of 4-way intersections (a measure of street network 
connectivity), inform us that in areas with more commercial land uses and high street connectivity, 
pedestrian volumes do not decrease as much on poor air quality days. Areas with more connected street 
grids (Tal & Handy, 2012) and more commercial businesses often allow shorter and more direct walking 
trips, which can shorten the time exposed to air pollution and thus may make people walking in these 
areas less sensitive to polluted air. Also, good street network connectivity often implies a business area—
coefficients were less negative and more positive along Main Street running north/south through the 
region (Figure 3.2)—which might involve mostly non-discretionary and work-related walk trips, which 
we expect to be less sensitive to poor air quality.  
 
On the other hand, there was a significant negative interaction for yellow and negative (but not significant) 
for orange days with average car ownership. In other words, in neighborhoods with higher car ownership, 
pedestrian volumes tend to decrease more on poor air quality days. One likely explanation is that greater 
car ownership provides more opportunities (modal options) for escaping air pollution and shifting from 
higher-exposure modes like walking to less-exposed modes like driving a personal automobile. Higher car 
ownership could potentially signify higher income groups whose tendency to take motorized vehicles is 
high in polluted days (Kim et al., 2023). Conversely, neighborhoods with limited private car access may 
not have such flexibility of modal shifting.  
 
Compared with walking, we did not find any significant variations across locations for the relationship 
between air quality and automobile traffic volumes (Table 3.4). This conclusion was likely due to the 
small number of stations (six) that were available for automobile traffic counts in study area 1 and the 
relatively small size of our study area (in terms of demographics and diversity). Another explanation 
could be the different spatial scales at which walking and driving take place. Let us assume that the travel 
behavioral differences in air quality responses are mostly due to who people are and where they live. If 
this is the case, then the shorter nature of walking trips will average these differences over a small spatial 
area, perhaps within one mile. Since automobile trips tend to be longer, then individual or neighborhood 
differences will be averaged over a larger scale, perhaps five or 10 miles. Thus, the differences that 
appear when comparing air quality relationships with traffic volumes across locations will be diminished 
for automobile traffic compared with pedestrian traffic. Given the sparseness of our automobile traffic 
volume count locations, we could not test this hypothesis.  
 



 40 

5.2.2 Study Area 2: Wasatch Front 
 
For pedestrian volumes, we found significant associations of several built and social environment 
variables with the slope of the air quality coefficients (Table 4.2). In general, pedestrian volumes 
increased more or decreased less on days with poor air quality in the following types of locations: greater 
job density, more mixing of jobs and residents, more children per household, greater unemployment, and 
near universities. The results for job density, children, and university proximity could relate to more 
mandatory trips (to work or school) being made in those locations; such trips (including escorting 
children to school) may to be less sensitive to external environmental factors like air pollution because 
they are not as easy to cancel or reschedule as compared with more discretionary trips for shopping or 
recreation. As was mentioned for study area 1, a greater diversity or balance of jobs and residents often 
indicates a more walkable neighborhood (Ewing & Cervero, 2010), so walk trips may be shorter, less 
exposed to air pollution, and thus less deterred by poor air quality. The result regarding the 
unemployment rate is not as easily explainable; however, it was of a small magnitude and only marginally 
significant.  
 
In contrast, pedestrian volumes increased less or decreased more on poor air quality days in locations with 
the following characteristics: more intersections, better job access by car, more rail transit stops, more 
schools, and neighborhoods with more workers per household and a larger share of non-white or Hispanic 
populations. The result for rail transit stops makes sense when viewed in relation to the (albeit non-
significant) decrease in rail transit volumes. Transit riders tend to have longer commutes than those using 
other modes, so they may be most willing to telework if given the opportunity, and thus pedestrian 
volumes might also go down near transit stops. The result for job access by car also makes sense when 
viewed in relation to the increase or no change in automobile traffic volumes; if it is easier to get to many 
places via car, people may be more likely to switch from walking to driving when the air quality is poor. 
For schools, parents may be more willing to drive their children to school than allow them to walk when 
there are elevated levels of air pollution. Regarding the finding about race/ethnicity, other research has 
found that non-white populations in the U.S. perceive greater risks from air pollution caused by 
automobiles than do U.S.-born white people (Macias, 2016), so it could make sense that their pedestrian 
travel behavior is more sensitive to area-wide poor air quality.  
 
For automobile traffic volumes, we found significant associations between the variables unemployment 
rate and percentage of non-white or Hispanic populations with the air quality coefficients (Table 4.4). 
Specifically, driving did not increase as much or decreased slightly more in neighborhoods with a greater 
share of the population either unemployed or reporting non-white or Hispanic race/ethnicity. Given that 
walking increased more or decreased less in areas with higher unemployment, this could mean that there 
was less mode shifting from walking to driving for people who were unemployed. In contrast, 
neighborhoods with more non-white or Hispanic populations saw greater reductions in both walking and 
driving, which again could be related to air pollution and environmental perceptions among these 
populations (Macias, 2016).  
  
5.3 Policy Implications 
 
This study informs stakeholders in air quality and transportation by highlighting the aggregate behavior of 
travelers during periods of area-wide air pollution, such as that caused by wintertime inversions, 
summertime ozone, or wildfire smoke. These findings are especially relevant for efforts to affect changes 
in travel and other health-related behaviors through air quality alerts. The Utah Division of Air Quality 
issues alerts that are directly linked to the color-coded AQI levels (Utah DEQ, 2022b). For example, on 
orange days, the recommendation for sensitive groups is to: “Reduce prolonged or heavy exertion. It’s 
OK to be active outside, but take more breaks and do less intense activities. Watch for symptoms such as 
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coughing or shortness of breath.” Also, the Utah Department of Transportation encourages people to 
“TravelWise” (UDOT, 2022) and reduce driving on or in advance of poor air quality days by using “soft” 
travel behavior change strategies such as carpooling, riding public transit, trip chaining, trip shifting, and 
teleworking. Many employers (including the State of Utah) have mandatory (mostly automobile) trip 
reduction programs that they can deploy on severe air pollution days. The call to drive less, carpool, and 
telework is also prevalent on major news media (Maffly, 2020; Mumford, 2022; Roe, 2018) as Utah 
grapples with poor air quality every winter. 
 
From our study’s results in both study area 1 (Cache County, Utah) and study area 2 (Wasatch Front 
region, Utah), it appears that people are walking less, by 10% or more, on days with unhealthy air quality 
(AQI > 100). This could be an active risk averse response to the air quality alerts or to seeing or breathing 
the air pollution. However, we find that people do not seem to be driving less on poor air quality days; 
instead, motor vehicle traffic volumes were actually higher on yellow or orange air quality days, all else 
equal and on average. This implies that air quality and travel behavior alerts are not effective at 
significantly reducing driving, at least as currently employed in these parts of Utah. Some places certainly 
saw fewer decreases in walking and more decreases in driving, so there are locational variations in these 
aggregate behavior changes. Overall, there was more evidence for risk averse reactions than for altruistic 
travel behavior changes (Noonan, 2014).  
 
Overall, more and different strategies may be needed to encourage sustainable and healthy travel behavior 
changes during episodes of area-wide poor air quality. New policies could include wider use of 
mandatory employer-based programs. Organizations could be encouraged or required to provide options 
for telecommuting and flexible work arrangements that can reduce the number of driving trips (Giovanis, 
2018; Kitou & Horvath, 2008). In cases of severe air quality, hard policies such as road pricing schemes 
could be introduced to decrease automobile traffic volumes (Isaksen & Johansen, 2021; Simeonova et al., 
2021). Soft policies could include communication campaigns to emphasize the health benefits of reducing 
automobile usage during poor air quality days, highlighting the collective impact of individual actions on 
air pollution reduction and public health. UTA could consider implementing free public transit during 
periods of bad air quality. (CVTD’s transit system is already fare-free.) Federal funds through the 
Congestion Mitigation and Air Quality Improvement program may be available for projects and programs 
to reduce air pollution emissions, including those that encourage mode shifts and other travel behavior 
changes.  
 
We also wish to highlight a potential equity or environmental justice issue. Recall our findings that both 
walking and driving decreased more on days with poor air quality in neighborhoods with higher shares of 
non-white or Hispanic residents and higher unemployment rates. While there could be localized benefits 
of reduced driving such as reduced motor vehicle emissions, the reduced mobility overall is potentially 
troubling because many of the public’s essential services and daily needs still must be met through travel. 
Therefore, this finding suggests policies to enhance public transit services to these communities, both on a 
short-term and ongoing basis, to allow for continued mobility and participation in society while both 
reducing exposure to air pollution through walking and reducing contributions to air pollution through 
driving. In addition, adjusting work policies to encourage telecommuting on days with poor air quality 
could further benefit vulnerable populations, reducing the need for travel and exposure to harmful 
conditions. 
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5.4 Limitations & Future Work 
 
This study had several shortcomings that could be remedied through future work. First, the number of 
days with very poor air quality (i.e., red “unhealthy” or purple “very unhealthy”) was quite limited, and 
there were only 2%–3% of observations with “unhealthy for sensitive groups” orange air quality levels. 
The implications of this included a reduction in our models’ statistical power to detect the likely small 
size effects of air pollution on traffic volumes. Considering a longer time frame and picking sites 
unfortunate enough to have experienced more days with more severe air pollution (including multiple 
days of red or worse air quality) could improve the statistical significance of the model’s estimated 
coefficients and potentially lead to measuring stronger relationships between air quality and multimodal 
traffic volumes.  
 
Second, though our study defined the air quality impacts on traffic volumes, it did not distinguish the 
different impacts that might be present during different seasons (i.e., winter and summer) or due to 
concentrations of different pollutants (i.e., nitrogen dioxide, ground-level ozone, and fine particulate 
matter). Owing to the different types of air pollution sources and causes and different travel options 
available during each season, we might see a different response in each season or because of different air 
pollutants. For example, people escaping from air pollution by driving to the mountains might be more 
common in summer than during the winter, or more common in winter in relation to recreational skiing. 
Also, the shift from automobiles to walking is more convenient in summer than during the cold winter. 
These hypotheses should be examined in future work.  
 
Third, improved air pollution and weather monitoring and modeling could improve the accurate 
measurement of our exposure variables. Although we tried to match multimodal traffic count locations 
with nearby weather and air quality stations, this method still assumed some degree of uniformity of 
precipitation, temperature, and air pollution across the area. Localized variations in these ground-level 
conditions—due to topography, heat-island effects, transportation networks, building and green space 
locations, etc.—were likely obscured in our analysis because of data limitations. On the other hand, one 
could argue about the appropriate spatial scale at which knowledge of weather and air quality levels might 
affect travel behavior choices that would manifest in differential multimodal traffic volumes.  
 
Fourth, a lack of robust data for public transit ridership led to several limitations: it did not allow us to 
build multilevel models for transit ridership; we could not examine bus ridership in study area 2; and we 
could not investigate locational variations in the relationship between air quality and transit ridership. For 
example, were there some areas which were more or less significantly affected by air quality? In the case 
of pedestrians, we could see different regions within study area 2 had a varied response to air quality; the 
lack of locational data for transit did not allow us to study this possibility.  
 
Fifth, the pedestrian volume models did not account for any similarity in unobserved factors affecting 
counts for stations that are located closer to each other; i.e., it ignored the spatial structure of the data. 
Accounting for potential spatial autocorrelation—such as the use of a spatial lag term—in the models 
would address this limitation. Sixth, all of the models did not account for temporal autocorrelation, 
although we did attempt to structurally model temporal patterns through the use of temporal control 
variables representing day-of-week and season. Future work could investigate time series modeling to 
better address the impact of temporal autocorrelation.  
 
Seventh, this study was done in a particular location (Utah, United States), so its findings may be limited 
to this or similar locations, e.g., the western U.S., mountain valleys, areas with specific predominant 
cultural characteristics. At the time of this study, Utah as a state was younger (median age 32 vs. 39 
years) and less racially diverse (79% vs. 61% of the population reporting white alone race) than the U.S. 
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population as a whole (US Census Bureau, 2022), which might have led to different results as different 
groups of people have diverse beliefs about outdoor air pollution (Johnson, 2002). Also, diverse income 
groups in various geographical areas show different levels of active travel (Buehler et al., 2020; Ghimire 
& Bardaka, 2023). Thus, we suggest future work examining other urban areas with more non-automobile 
transportation options and greater availability of frequent public transportation, larger downtowns, more 
demographic diversity, etc., as future work might find stronger and/or more significant impacts of air 
pollution on multimodal traffic volumes.  
 
Eighth, this study did not account for the period during and since the COVID-19 pandemic. After 
COVID-19, people’s ability and adaptation to teleworking changed drastically (Belostecinic et al., 2021). 
Employees have been more flexible in the policy of teleworking, which means that during the periods of 
poor air quality, more travelers could respond by opting for teleworking. However, our study did not 
include the days during COVID-19, as it would have complicated the inference of relationships between 
air quality and traffic volumes. There were many significant travel impacts during early phases of COVID 
which might not reflect the true long-term relationship between air quality and aggregate travel behavior. 
Further studies could look into the relationship between air quality and multimodal traffic volumes during 
and after COVID by including adequate controls for COVID spread and response, as well as changes in 
employer policies and employee preferences around remote work and schedule flexibility.  
 
Ninth, although this research explored changes in both pedestrian and automobile traffic volumes as well 
as system-wide bus and rail transit ridership, due to the aggregate nature of the data it could not explain 
how the change in volume/ridership for different modes could have been interlinked or precisely why 
driving increased and walking decreased on poor air quality days. Future work could supplement this 
aggregate traffic volume analysis with a more disaggregate analysis of travel diaries, travel behaviors 
derived from location-based services data, and/or travel surveys to understand how and why individuals 
change their travel patterns in response to poor air quality. The growing availability of big data sources of 
travel behavior information allows for the study of many people over many days (Xu et al., 2021), and 
thus break down the boundaries between aggregate and disaggregate analyses. Such studies could be 
better able to capture behavioral responses to air pollution, such as shifting modes or forgoing or 
rescheduling trips. We encourage researchers to address these issues in future work.  
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