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ABSTRACT1  

An efficient and safe transportation system is essential to communities during the long-term recovery 
period after earthquakes. A disrupted transportation network due to infrastructure damage or failure 
affects the functionality of the traffic system and poses increased traffic safety risks. A rational 
assessment of the traffic network performance in terms of both traffic efficiency and safety cannot only 
provide comprehensive quantification of system resilience, but also enable more risk-informed post-
hazard recovery planning. A new methodology to assess the resilience performance of transportation 
networks during post-earthquake long-term recovery period is developed in this study with two main 
innovative contributions: (1) simulating the traffic performance of partially closed road segments in the 
network simulation and optimization, which offer useful tool to capture the time-progressive recovery 
process; and (2) integrating both traffic efficiency and safety into the resilience assessment and recovery 
prioritization. After a resilience indicator is introduced to characterize the overall traffic efficiency and 
safety of the transportation network using probabilistic sampling method, a comprehensive restoration 
priority measure is proposed to support post-earthquake restoration of damaged bridges. A demonstrative 
study is conducted on a hypothetical network system located in an earthquake prone area. 

 

 

 

 

 

 

 

 

 

  

 

1 This report is based on the contents from the published journal paper: Wu, Y., Hou, G. and Chen, S. (2021). “Post-
earthquake resilience assessment and long-term restoration prioritization of transportation network”, Reliability 
Engineering and System Safety, 211, 107612. 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Background 

Some disastrous natural hazards can cause severe structural damages, casualty, and injuries during very 
short time periods (Lu et al., 2019; and Liu et al., 2020). Following an earthquake, for example, some 
vulnerable transportation infrastructures such as bridges can be severely damaged, which may lose partial 
to full functionality. One example was during the 2008 Wenchuan earthquake when extensive highway 
and bridge damages were reported in Sichuan Province, China (Hu et al. 2014). The extensive repairs of 
disrupted transportation infrastructures usually take months or even years following earthquakes to finish, 
making the transportation network in the region remaining partially disrupted over an extended period 
during the long-term recovery stage (Blackman et al. 2017; Yi and Fu 2018). A timely recovery of a 
disrupted transportation network is of utmost importance because it cannot only help improving the traffic 
efficiency of the affected community, but also more importantly, expedite long-term recovery efforts of 
other critical infrastructures, e.g., buildings, power system and water system, that are heavily dependent 
on effective transportation. Moreover, partially disrupted traffic networks over extended durations of 
repairs will create multiple work zones with considerably elevated vehicle crash risks, threatening the 
safety of both general drivers and those involved in post-hazard recovery efforts (Yang et al. 2015). To 
strategically plan the long-term post-hazard recovery of disrupted transportation infrastructures requires 
rational performance modeling of disrupted transportation infrastructures and networks and consideration 
of both traffic efficiency and safety impacts.  

There have been a long history of studies focusing on the post-disaster performance modeling of 
transportation networks (e.g., Kozin and Zhou 1990; Wakabayashi & Kameda 1992; Chang and Nojima 
2001; Zamanifar & Seyedhoseyni 2017; and Sun et al 2020). Some studies paid attention to the resilience 
analysis and modeling of critical transportation infrastructures. Akiyama et al. (2020) investigated the 
importance of considering both independent and interrelated hazards on bridges by developing a life-
cycle reliability and risk approach to assess bridge and networks under both independent and interaction 
hazards like earthquakes, tsunami, and corrosion. Dong & Frangopol (2015) estimated the risk and 
resilience of bridges under earthquakes by proposing an approach to improve bridge mitigation under 
seismic hazard. Besides the mainshocks, they also investigated the impact of aftershocks on the bridge 
resilience, and concluded aftershocks have significant effects on bridge repair loss and residual 
functionality. Argyroudis et al. (2020) proposed an integrated framework to account for the nature and 
sequence of multiple hazards and their effects and to quantify the resilience of critical transportation 
infrastructures subjected to hazards considering the structural vulnerability and recovery rapidity. Some 
other studies estimated the transportation network resilience based on connectivity and accessibility of the 
network. Zhang & Wang (2016) proposed the weighted independent pathway as the network performance 
metric to systematically integrate the network topology and roadway redundancy level. Wu & Chen 
(2019) modeled the resilience performance of traffic network in terms of the accessibility of medical 
resources during the emergency medical response period considering the interactions between 
transportation infrastructures, people and hazard. Zhou et al. (2019) proposed the concepts of “global 
connectivity” and “local connectivity” to consider both the connection extent of the whole transportation 
network and the distance between each node to its neighbors and evaluated the system efficiency using 
percolation theory. In recent years, more and more researchers incorporated travel demand and traffic 
assignment methods into their works when simulating the resilience and performance of transportation 
networks during post-earthquake period. Alipour & Shafei (2016) proposed a comprehensive framework 
to quantify the seismic resilience of the transportation networks considering the degradation in the 
functionality of the network caused by bridge damages and the effect of aging mechanisms of bridges and 
demonstrated the approach on the highway network of Los Angeles and Orange Counties. Kilanitis & 
Sextos (2019) developed a framework to estimate the comprehensive loss of the transportation networks 
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caused by travel time variations and trip cancelations and simulated the variation of origin-destination 
demand during the post-earthquake recovery period. Kameshwar et al. (2020) developed a bridge 
restoration model based on decision trees to assess the performance of regional road networks under 
extreme events to provide a detailed assessment of bridge functionality and traffic restriction and derived 
the traffic capacity of disrupted links based on the Highway Capacity Manual. Although they proposed a 
methodology to assess various functional levels of bridge and road and adopted the traffic assignment 
method to derive the performance index based on travel time and distance, they didn’t consider the traffic 
safety and the impact of road disruption on other parameters in the Bureau Public Road function beyond 
link traffic capacity.  

In addition to studies focusing on post-hazard traffic performance assessment, there have also been some 
studies focusing on post-hazard restoration planning and bridge prioritization. Most of the studies 
optimized the post-earthquake restoration based on the network performance or resilience and information 
about infrastructure repair time, limited resources, and contractors (e.g., Chen and Tzeng 1999; Cho et al., 
2000; Orabi et al., 2009, 2010; and El-Anwar et al., 2015). Bocchini & Frangopol (2012a) presented an 
optimization for the repair activities of the bridges in a transportation network that are severely damaged 
by an earthquake. The study adopted three conflicting objectives: maximizing network resilience, 
minimizing the time and total costs, and provided an entire set of Pareto solutions to the optimization. 
Bocchini & Frangopol (2012b) built a model to prioritize the intervention of bridges along a highway 
segment by incorporating both travel time and distance into the resilience indicator and conducting the 
optimization with two conflicting objectives: resilience and cost. Zhao & Zhang (2020) proposed a bi-
objective and bi-level optimization framework to optimize the transportation infrastructure restoration 
plan. They took the unmet demand and total travel time as performance measures and solved the 
optimization using elastic user equilibrium and a modified active set algorithm. Although these studies 
optimized the bridge restoration based on network performance including incorporating network 
performance, limited resources, and traffic assignment, they didn’t consider the effect of work zones on 
travel time, safety, and bridge prioritization. Most existing studies investigated the bridge and link 
importance, or prioritization based on the network connectivity, accessibility, and topology. Wu & Chen 
(2019) defined the importance value for vulnerable links based on their impact on the network 
performance by comparing the network performance when a link works or fails. Stochastic method 
wasn’t employed because the uncertainty was considered using the occurrence probability for each 
scenario. Merschman et al. (2020) prioritized the bridge repair using three performance measures: total 
travel distance and time, bridge importance based on connectivity, and a social measure in terms of the 
accessibility to emergency facilities. The bridge importance measure is defined from the topology of the 
network and shortest paths. These studies focused mainly on the post-hazard emergency response stage, 
and the proposed connectivity-based bridge importance measures cannot be applied to bridge restoration 
planning. A very limited number of studies considered the partial functionality of links when deriving 
bridge prioritization. Wang & Jia (2019) proposed an efficient sample-based approach to estimate a 
probabilistic sensitivity measure of the network that yields bridge importance rankings for pre-earthquake 
risk mitigation priorities. The methodology incorporated the uncertainties in hazards and bridge damage 
states and enabled effective search of the mitigation strategies within a small subset. Also. They 
considered the partial functionality of disrupted links by assuming different levels of capacity according 
to damage states. Liu et al. (2020) also considered the reduced traffic carrying capacity of damaged links 
and proposed a modified network robustness index as the resilience measure to prioritize the network 
recovery using a two-stage optimization method. The traffic capacities of damaged links were assumed to 
be determined through communication with stakeholders. Both studies considered partial functionality of 
damaged links, but the remaining traffic capacity was not rationally assessed or investigated. 

All these studies as summarized above have made important contributions to the post-disaster traffic 
performance assessment and reconstruction planning during the long-term recovery stage. There are, 
however, still several major limitations: (1) most of the studies considered either fully closed or fully 
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opened links in terms of the functionality of traffic networks following hazards. As discussed earlier, the 
restoration processes of infrastructures (e.g., severely damaged bridges or roads) following earthquakes 
usually take rather long time. It is very common that some roads or bridges may only remain open for 
some lanes for certain time periods, especially given the common shortage of available restoration 
resources. Assumptions of instantaneous repair and recovery made in many existing studies were not 
realistic, which directly affect the accuracy and rationality of related traffic performance assessment and 
prioritization decisions during the long-term recovery stage. Although some studies have related the 
bridge traffic restrictions to the bridge functionality levels based on the Highway Capacity Manual 
(Kameshwar et al. 2020), they didn’t consider the effects of bridge length and flow merging and diverging 
on link travel time, which are very important when simulating the traffic performance of partially closed 
links. A methodology to rationally assess the traffic performance on transportation networks with various 
levels of disruptions between fully closed and fully opened is still lacking; (2) as discussed earlier, a 
partially disrupted transportation network (e.g. bridges and roads with limited lanes open) not only affects 
travel time, but also creates multiple work-zone scenarios and results in merging and diverging of link 
traffic flows, which considerably increase vehicle crash risks (Yang et al. 2015). Therefore, for traffic 
planning in the long-term recovery stage following earthquakes, both travel time and safety risks should 
be appropriately considered for partially disrupted traffic networks; (3) uncertainties associated with 
hazards and bridge fragility affect the long-term recovery stage, which have been rarely incorporated into 
the existing studies of traffic performance (e.g. time and safety). In addition, post-disaster repair priority 
of the vulnerable bridges is related not only to the network topology and infrastructure location but also to 
the seismic uncertainty, travel demand, traffic efficiency and safety. So, for the traffic performance 
assessment and post-disaster restoration prioritization, uncertainties should be carefully incorporated.  

1.2 Organization of This Report 

This study aims to address these gaps by proposing a methodology to assess the resilience performance of 
transportation networks during the post-earthquake long-term recovery period that can consider the traffic 
performance of roads with partially functioning bridges. The resulting resilience framework can provide 
reliable information on travel time and traffic safety of roads with closed lanes on their bridges. This 
study uses a microscopic traffic flow simulation model (Hou et al. 2017, 2019) to simulate road travel 
time so it can be used to any road with given parameters and lane closure conditions. Moreover, this study 
adopts statistical methods for transportation data analysis to estimate the traffic accident frequency of 
roads with different bridge functionality levels and it can be applied to different roads if given the site-
specific traffic crash data (Washington et al. 2010). A resilience indicator is proposed based on the 
simulated travel time and traffic safety performance to evaluate the performance of regional road 
networks after major hazards. The model uses existing seismic attenuation laws and bridge fragility data 
to estimate bridge failure, applies Monte Carlo simulation and Latin Hypercube sampling to consider the 
uncertainties in earthquake intensity and bridge fragility, and adopts User-Equilibrium (UE) method 
(Wardrop 1982) and Frank-Wolfe algorithm (Frank & Wolfe 1956; Janson 1991; and Lee & Machemehl 
2005) to conduct traffic assignment. Furthermore, this study proposes a bridge restoration prioritization 
measure based on system resilience and uncertainties to provide critical information for stakeholders to 
make risk-informed decisions on bridge restoration during post-earthquake long-term recovery period. 
The Greedy algorithm and probabilistic sampling method are adopted to derive the bridge prioritization 
measure. The proposed methodology is applied to the transportation network of Centerville (Ellingwood 
et al. 2016), a hypothetical community located in an earthquake prone area. 

The report is composed of four chapters: Chapter 1 introduces pertinent background information and 
literature review results related to the present study. In Chapter 2, the resilience assessment framework of 
disrupted traffic network in long-term recovery stage is introduced. In Chapter 3, numerical 
demonstration of the proposed framework through case study is conducted. Chapter 4 summarized the 
findings from the report, followed by some discussions.  
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2. RESILIENCE ASSESSMENT FRAMEWORK OF DISRUPTED 
TRANSPORTATION NETWORK IN LONG-TERM RECOVERY 
STAGE 

The objective of this study is to assess the resilience performance of transportation networks during post-
earthquake long-term recovery period, incorporate travel efficiency and safety of disrupted roads and 
propose a bridge prioritization measure to support decision makings on post-earthquake bridge 
restoration. As shown in Figure 2.1, the methodology starts with hazard simulation to generate bridge 
damage scenarios. The input data includes earthquake information like Richter magnitude, location of the 
epicenter, and locations of the bridges; and the output are the earthquake intensities like peak ground 
acceleration. Seismic attenuation laws and probabilistic sampling methods are applied to estimate 
earthquake intensities and their uncertainties, respectively. Then the sampled earthquake intensities are 
used to generate possible bridge damage scenarios based on bridge seismic fragility and probabilistic 
sampling method.  

In Figure 2.1, when simulating the travel time of roads with different levels of functionalities, the inputs 
are the road and traffic information. Methods like microscopic traffic flow simulation can be adopted to 
derive the modified Bureau of Public Road function (US Bureau of Public Roads 1964) to accommodate 
partial functionality of roads due to bridge damages. For any sampled bridge damage scenario and given 
travel demand, the travel time and traffic flow of the links and the system can be estimated using traffic 
assignment methods. For the long-term recovery period, the traffic demand of the system can be 
recovered to almost the same as the pre-disaster level, and the travel demand of each OD pair can usually 
be obtained from the transportation department of a city (Chang et al. 2012) or estimated from existing 
Metropolitan Planning Organization (MPO) models (Kimley-Horn et al., 2007). So, it is assumed in this 
study the travel demand of the community during the long-term recovery period is same as the pre-
earthquake level. The traffic flows of different links, together with other traffic safety factors, such as 
work zone lengths, are the inputs when deriving the traffic safety model using regression models like 
Poisson regression and Negative Binomial regression (Washington et al. 2010). The total system crash 
frequency for any sampled scenario can be estimated with the traffic safety model and link traffic flows. 

In this study, the resilience index is defined based on the total system travel time and total system crash 
frequency (Figure 2.1) to consider both the traffic efficiency and safety performance of the transportation 
network. By introducing the level-of-performance (LOP) criterion, the system reliability is derived 
through quantifying the number out of the sampled scenarios under which the performance of the 
transportation network, in terms of travel time and traffic safety, can meet the selected criterion. The 
bridge restoration prioritization measure is the indicator for the decision-makers to prioritize the bridge 
restoration, especially when only limited resources are available. The detailed process and information of 
the proposed methodology are presented in the following sub-sections. 
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Figure 2.1  Flowchart of the model 

2.1 Seismic Fragility of Bridges 

The seismic fragility of structures can be defined as the probabilities of a given failure type of the 
structure under a given intensity level of earthquakes, e.g., spectral acceleration (SA). The failure in terms 
of a limit state is defined as an excess of the limiting value of the performance indicator, such as stress, 
displacement, or others. There are many sources of uncertainties affecting the accuracy of the structural 
capacity and fragility curves are often used to quantify the confidence level for each damage or limit state. 
For bridge seismic analyses, typically there are several different damage states, for example, no damage 
or slight/minor damage, moderate damage, extensive damage, and complete damage (Nielson & 
DesRoches 2007, and Argyroudis et al., 2019). For each damage state, the fragility curve stands for the 
probability of occurrence under different values of a hazard parameter. The probability of a bridge 
suffering and exceeding a given damage state is modeled as a cumulative lognormal distribution. For 
bridge damage, given the peak ground acceleration, PGA, the probability of suffering or exceeding a 
damage state, 𝑖𝑖, is modeled as: 

𝑃𝑃[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷 𝑖𝑖 𝑜𝑜𝑜𝑜 𝐷𝐷𝑜𝑜𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑜𝑜|𝑃𝑃𝑃𝑃𝑃𝑃] = Φ�ln(𝑃𝑃𝑃𝑃𝑃𝑃)−ln(𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖)
𝜁𝜁𝑖𝑖

�                           (1) 

where 𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 is the median PGA value of damage state 𝑖𝑖; 𝜁𝜁𝑖𝑖 is the dispersion of damage state 𝑖𝑖 (Nielson & 
DesRoches 2007). The damage state of bridge 𝑖𝑖 is defined as: 

𝐷𝐷𝑖𝑖 = 𝐷𝐷𝑖𝑖�𝑃𝑃𝑃𝑃𝑃𝑃�𝜉𝜉𝑝𝑝�, 𝜉𝜉𝑚𝑚𝑖𝑖�                                                           (2) 
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where 𝜉𝜉𝑝𝑝 is the uncertainty of PGA; 𝜉𝜉𝑚𝑚𝑖𝑖 is the uncertainty of structural damage in the fragility curve of 
bridge 𝑖𝑖 (Chang et al., 2012). 

 

PGA is one of the commonly used seismic intensities when developing seismic fragility of bridges (e.g., 
Nielson & DesRoches 2007), so it is adopted herein to estimate the bridge damage states in this study. 
The median of the peak ground acceleration, 𝑃𝑃𝑃𝑃𝑃𝑃, of a given location can be derived by the attenuation 
laws in terms of Richter magnitude (𝑀𝑀𝐿𝐿) and epicentral distance (𝑅𝑅𝑚𝑚).  

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑓𝑓(𝑀𝑀𝐿𝐿 ,𝑅𝑅𝑚𝑚)                                                                 (3) 

The uncertainty of PGA is often assumed to follow a lognormal distribution because the seismic ground 
motions are estimated with attenuation laws that are usually modeled as the exponential of ML and R 
(Campbell 1981). PGA at a given location follows lognormal distribution: 

ln𝑃𝑃𝑃𝑃𝑃𝑃 = ln�𝑃𝑃𝑃𝑃𝑃𝑃� + 𝜉𝜉𝑝𝑝                                                         (4) 

where 𝜉𝜉𝑝𝑝 is the uncertainty of PGA, same as in Eq. (2). Following the work by Adachi and Ellingwood 
(2007), PGA is assumed with a coefficient of variance of 0.6.  

2.2 Travel Time Estimate on Post-earthquake Urban Arterials 

2.2.1 Post-earthquake Traffic on Urban Arterials 

In post-earthquake urban transportation networks, road links may be disrupted directly or indirectly. In 
this study, we only consider the disruption to the traffic flow by damaged bridges given the fact that other 
temporary or relatively minor disruptions are reasonably assumed to be completed by the time of long-
term recovery. According to Padget and DesRoches (2007), a moderately or less damaged bridge can 
typically be recovered to its original traffic carrying capacity one week after the earthquake, while an 
extensively damaged bridge can only recover 50% of its capacity while a completely damaged bridge 
cannot carry any traffic. Considering the long-term recovery period usually begins at least 7 days after the 
earthquake, the traffic capacity from the survey by Padget and DesRoches (2007) still can be applied 
during long-term recovery periods. When site-specific data of traffic capacity of damaged bridges is not 
available, the generic data from the existing studies (e.g., Padget & DesRoches 2007) will be adopted.   

For demonstration purposes in this study, a bridge which cannot carry any traffic (completely damaged) is 
deemed to be totally closed; and 50% traffic carrying capacity (extensively damaged) is assumed that half 
of the lanes are closed on the bridge. This study focuses on urban transportation networks with two-way 
single-lane and two-way double-lane roads, which are very common in the US. If a bridge on any of the 
two-way single-lane roads suffers complete damage, the road will be closed to all the through traffic. If a 
bridge on a two-way single-lane road suffers extensive damage, it is assumed one of the lanes on the 
bridge will be closed as a “work zone” and the other lane will accommodate traffic with a flag person to 
direct the traffic of the lane. In this case, it is assumed the free flow travel time on this link is doubled 
while the capacity remains the same. If a bridge on a two-way double-lane road suffers extensive damage, 
two lanes on the bridge will be closed as “work zones” and the link will be degraded into a partial two-
way single lane road with “work zones”. Therefore, for an urban transportation network with two-way 
single-lane and two-way double-lane roads, there are three typical traffic scenarios after earthquakes 
(Figure 2.2): the first one is the normal 1-lane traffic, the second one is the normal 2-lane traffic, and the 
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third one is the disrupted 2-lane traffic, in which one lane is closed for the damaged bridge and the other 
lane is open. 

 

(a) Normal 1-lane traffic 

 

(b) Normal 2-lane traffic 

 

(c) Disrupted 2-lane traffic 

Figure 2.2  Post-earthquake traffic scenarios 

2.2.2  Microscopic Traffic Flow Simulation Model 

For intact roads shown in Figure 2.2 (a) and (b), the travel time on a road link has been often predicted 
with the widely adopted travel time functions for intact roads (e.g., BPR functions). Lane reduction due to 
damaged bridges shown in Figure 2.2(c) will reduce the road traffic capacity and increase the travel time. 
For roads with partial disruptions as shown in Figure 2.2(c), the corresponding travel time functions are 
however not available and therefore need to be defined before the traffic performance can be assessed 
quantitatively. Traditionally, travel time function for intact roads can be established based on empirical 
data from traffic monitoring or calibrating the coefficients of BPR functions. Actual post-hazard traffic 
data, however, has been very rare and as a result, simulation-based approach is often needed to derive the 
travel time functions for various disruption scenarios. In this study, a Cellular Automaton (CA)-based 
microscopic traffic flow simulation model developed by Hou et al. (2017, 2019) is used to simulate 
normal and disrupted traffic flow on post-earthquake arterials and estimate the travel time functions.   

The effect of traffic lights must be considered for urban arterials. As shown in Figure 2.2, there is a traffic 
light at the right end of a road section, with a cycle length of 𝑇𝑇 and a green ratio of 𝑅𝑅. The orange light 
period is ignored. The durations of green-light phase and red-light phase are 𝑇𝑇𝑔𝑔 = 𝑇𝑇 ∗ 𝑅𝑅 and 𝑇𝑇𝑟𝑟 = 𝑇𝑇 − 𝑇𝑇𝑔𝑔, 
respectively. The CA model used in this study includes forwarding and lane-changing rules. The 
longitudinal position and velocity of vehicle 𝑖𝑖 are denoted by 𝑥𝑥𝑖𝑖𝑡𝑡 and 𝑣𝑣𝑖𝑖𝑡𝑡 at the time step 𝑆𝑆. At next time 
step 𝑆𝑆 + 1, position 𝑥𝑥𝑖𝑖𝑡𝑡+1 and velocity 𝑣𝑣𝑖𝑖𝑡𝑡+1 can be updated through the forwarding and lane-changing 
rules. The forwarding rules can be described as a process of step 1 to 4, which are performed in parallel 
for all the vehicles. 
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Step 1 Acceleration: 𝑣𝑣𝑖𝑖𝑡𝑡+1 = 𝐷𝐷𝑖𝑖𝑚𝑚�𝑣𝑣𝑖𝑖𝑡𝑡 + 𝐷𝐷𝑖𝑖, 𝑣𝑣𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚�. 

Step 2 Deceleration: 𝑣𝑣𝑖𝑖𝑡𝑡+1 = 𝐷𝐷𝑖𝑖𝑚𝑚�𝑣𝑣𝑖𝑖𝑡𝑡+1,𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖𝑡𝑡�, if the traffic light is green in front of vehicle 𝑖𝑖; 𝑣𝑣𝑖𝑖𝑡𝑡+1 =
𝐷𝐷𝑖𝑖𝑚𝑚�𝑣𝑣𝑖𝑖𝑡𝑡+1,𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖𝑡𝑡 ,𝑆𝑆𝑖𝑖�, if the traffic light is red in front of vehicle 𝑖𝑖. 

Step 3 Randomization with a probability of 𝑔𝑔𝑟𝑟: 𝑣𝑣𝑖𝑖𝑡𝑡+1 = 𝐷𝐷𝐷𝐷𝑥𝑥�𝑣𝑣𝑖𝑖𝑡𝑡+1 − 𝑚𝑚𝑖𝑖, 0�. 

Step 4 Movement: 𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑡𝑡+1. 

where 𝑣𝑣𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum velocity of vehicle 𝑖𝑖; 𝐷𝐷𝑖𝑖 and 𝑚𝑚𝑖𝑖 denote the acceleration rate and 
deceleration rate of vehicle 𝑖𝑖; 𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖𝑡𝑡 is the clear distance between vehicle 𝑖𝑖 and its front vehicle 𝑖𝑖 + 1 on 
the current lane at time step 𝑆𝑆, 𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖+1𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑡𝑡 − 𝑙𝑙𝑖𝑖; 𝑙𝑙𝑖𝑖 is the length of vehicle 𝑖𝑖; 𝑆𝑆𝑖𝑖 is the clear distance 
between vehicle 𝑖𝑖 and the traffic light. 

For 2-lane traffic as shown in Figure 2.2(b) and (c), vehicle 𝑖𝑖 will perform a lane-changing maneuver with 
a probability of 𝑔𝑔𝑐𝑐ℎ, if the lane-changing rules shown in Eq. (4) to (6) are satisfied. 

𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖𝑡𝑡 < 𝐷𝐷𝑖𝑖𝑚𝑚�𝑣𝑣𝑖𝑖𝑡𝑡 + 𝐷𝐷𝑖𝑖 , 𝑣𝑣𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚�                                               (5) 

𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖,𝑓𝑓𝑡𝑡 > 𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖𝑡𝑡                                                                    (6) 

𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖,𝑏𝑏𝑡𝑡 > 𝑣𝑣𝑖𝑖,𝑏𝑏𝑡𝑡                                                                       (7) 

where 𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖,𝑓𝑓𝑡𝑡  is the clear distance between vehicle 𝑖𝑖 and the nearest vehicle on the target lane ahead of 
vehicle 𝑖𝑖 at time step 𝑆𝑆; 𝐷𝐷𝐷𝐷𝑔𝑔𝑖𝑖,𝑏𝑏𝑡𝑡  is the clear distance between vehicle 𝑖𝑖 and the nearest vehicle on the target 
lane behind vehicle 𝑖𝑖 at time step 𝑆𝑆; 𝑣𝑣𝑖𝑖,𝑏𝑏𝑡𝑡  is the velocity of the nearest vehicle on the target lane behind 
vehicle 𝑖𝑖. 

Open boundary conditions are used in this model. Vehicles are injected into the road section of simulation 
from the left end with a flow rate of 𝑞𝑞, and the time headway ℎ is assumed to follow a displaced 
exponential distribution, which has a cumulative probability distribution as follows: 

𝐹𝐹(ℎ) = 1 − 𝐷𝐷−𝜆𝜆(ℎ−𝑡𝑡𝑚𝑚)                                                           (8) 

where 𝐹𝐹(ℎ) is the cumulative distribution function of ℎ;  𝑆𝑆𝑚𝑚 is the minimum headway between vehicles; 
𝜆𝜆 = 𝑞𝑞

(1−𝑡𝑡𝑚𝑚𝑞𝑞). If a vehicle reaches the right end of the road section, it will leave when the traffic light is 
green and will stop when the traffic light is red. 

2.3 Traffic Safety Risks of Partially Disrupted Infrastructures 

Earthquakes can cause bridge damage or even collapse, which will change the traffic patterns on the 
whole network. Both the damaged infrastructure and the traffic volume affect car crash frequencies. 
Whenever a bridge is under repair with partial blockage by providing limited traffic, it can be practically 
treated as a work zone with increased traffic safety risks (Yang et al. 2015). Poisson Regression is a basic 
but popular count-data model to simulate traffic crash frequency. If historical crash data is available, 
statistical analyses with more advanced models (e.g., Negative Binomials, panel data models) can be 
conducted to capture the site-specific safety performance of the area. If the site-specific crash data is not 
available or sufficient, Poison model will be an ideal option as the default and baseline analysis model 
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thanks to its minimum data requirement and popularity. In a Poison regression model, the probability of 
road 𝑖𝑖 having 𝑦𝑦𝑖𝑖 crashes (where 𝑦𝑦𝑖𝑖 is a non-negative integer) is given by 

𝑃𝑃(𝑦𝑦𝑖𝑖) =
𝐸𝐸𝐸𝐸𝑃𝑃(−𝜆𝜆𝑖𝑖)𝜆𝜆𝑖𝑖

𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!
                                                                   (9) 

where 𝑃𝑃(𝑦𝑦𝑖𝑖) is the probability of road 𝑖𝑖 having 𝑦𝑦𝑖𝑖 crashes per year and 𝜆𝜆𝑖𝑖 is the Poisson parameter for 
road 𝑖𝑖, which is equal to the expected number of crashes per unit time on road 𝑖𝑖, 𝐸𝐸[𝑦𝑦𝑖𝑖] (Washington et al. 
2010). Poisson regression models are estimated by specifying the Poisson parameter 𝜆𝜆𝑖𝑖 (the expected 
number of events per period) as a function of explanatory variables. For the long-term recovery case, 
explanatory variables might include the average hourly traffic, length of roads, work zone length, and 
duration of work zone length. The most common relationship between explanatory variables and the 
Poisson parameters is the log-linear model, 

𝜆𝜆𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑃𝑃(𝛽𝛽𝑥𝑥𝑖𝑖)                                                                   (10) 

where 𝑥𝑥𝑖𝑖 is the vector of explanatory variables and 𝛽𝛽 is the vector of estimable parameters. In this 
formulation, the expected number of events per period is given by 𝐸𝐸[𝑦𝑦𝑖𝑖] = 𝜆𝜆𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑃𝑃(𝛽𝛽𝑥𝑥𝑖𝑖) (Washington 
et al. 2010). According to Washington et al. (2010), this model is estimated by standard maximum 
likelihood methods, with the likelihood function given as 

𝐿𝐿(𝛽𝛽) = ∏ 𝐸𝐸𝐸𝐸𝑃𝑃[𝐸𝐸𝐸𝐸𝑃𝑃(𝛽𝛽𝑚𝑚𝑖𝑖)][𝐸𝐸𝐸𝐸𝑃𝑃(𝛽𝛽𝑚𝑚𝑖𝑖)]𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖!𝑖𝑖                                                 (11) 

2.4 Resilience Index and Applications 

2.4.1  Traffic Assignment 

The static traffic assignment using user equilibrium (UE) model provides a reasonable and efficient 
prediction of the average travel time and is widely adopted by many transportation agencies and 
researchers. The mathematical formulation of UE can be given by 

Minimize     ∑ ∫ 𝑆𝑆𝑖𝑖(𝜔𝜔)𝑚𝑚𝑖𝑖
0𝑖𝑖 𝑚𝑚𝜔𝜔                                                                              (12) 

                                    subject to  

𝑥𝑥𝑖𝑖 = ∑ ∑ ∑ 𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟𝛿𝛿𝑖𝑖,𝑘𝑘𝑟𝑟𝑟𝑟  ,∀𝑖𝑖𝑘𝑘𝑟𝑟𝑟𝑟                                                               (13) 

�
∑ 𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑞𝑞𝑟𝑟𝑟𝑟,   ∀𝑜𝑜, 𝑠𝑠𝑘𝑘
𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟 ≥ 0,       ∀𝑜𝑜, 𝑠𝑠                                                                      (14) 

where 𝑥𝑥𝑖𝑖 is the traffic flow on link 𝑖𝑖, 𝑖𝑖 ∈ 𝑙𝑙𝑖𝑖𝑚𝑚𝑙𝑙 𝑠𝑠𝐷𝐷𝑆𝑆 𝑃𝑃; 𝑆𝑆𝑖𝑖 is the travel time on link 𝑖𝑖; 𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟 is the traffic flow 
on the 𝑙𝑙𝑡𝑡ℎ path connecting origin-destination (OD) pair 𝑜𝑜 − 𝑠𝑠; 𝛿𝛿𝑖𝑖,𝑘𝑘𝑟𝑟𝑟𝑟  is the indictor variable: 𝛿𝛿𝑖𝑖,𝑘𝑘𝑟𝑟𝑟𝑟 = 1, if 
link 𝑖𝑖 is part of the 𝑙𝑙𝑡𝑡ℎ path connecting OD pair 𝑜𝑜 − 𝑠𝑠, otherwise 𝛿𝛿𝑖𝑖,𝑘𝑘𝑟𝑟𝑟𝑟 = 0. 𝑞𝑞𝑟𝑟𝑟𝑟 is the travel demand from 𝑜𝑜 
(origin) to 𝑠𝑠 (destination) (Wardrop 1982). 
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2.4.2  System Resilience Index 

The total system travel time (TSTT) is proposed to reflect the efficiency of the transportation network and 
is defined as 

𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇 = ∑ 𝑆𝑆𝑖𝑖(𝑥𝑥𝑖𝑖)𝑖𝑖 = ∑ 𝑆𝑆0 �1 + 𝛼𝛼 �𝑚𝑚𝑖𝑖
𝐶𝐶𝑖𝑖
�
𝛽𝛽
�𝑖𝑖                                           (15) 

where 𝐶𝐶𝑖𝑖 is the traffic carrying capacity of link 𝑖𝑖; 𝑆𝑆0 �1 + 𝛼𝛼 �𝑚𝑚𝑖𝑖
𝐶𝐶𝑖𝑖
�
𝛽𝛽
� is from the Bureau of Public Roads 

(BPR) function; 𝛼𝛼  and 𝛽𝛽  are BPR function parameters with classical values of 0.15 and 4.0, respectively 
(US Bureau of Public Roads 1964), but their values vary by link types according to recent studies (Hou et 
al. 2017, 2019). In this study, the travel demand stays the same during the long-term recovery period. So, 
the smaller TSTT’s value is, the more efficient the network is in terms of travel time. The efficiency 
indicator of the system is defined as 

𝑅𝑅𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇0
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

                                                                         (16) 

where 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇0 and 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇 are for the pre-disaster period and long-term recovery period respectively. 

The expected total system crash frequency (TSCF) is used to quantify the traffic safety risk of the 
network, which is defined as: 

𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹 = ∑ 𝜆𝜆𝑖𝑖𝑖𝑖                                                                   (17) 

The safety indicator of the system is defined as: 

𝑅𝑅𝑟𝑟 = 𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇0
𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇

                                                                        (18) 

where 𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹0 and 𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹 are for the pre-disaster period and long-term recovery period respectively. 

The resilience index (RI) in this study is proposed to consider both traffic efficiency and safety 
performance: 

𝑅𝑅𝐼𝐼 = 𝐷𝐷.𝑅𝑅𝑡𝑡 + (1 −𝐷𝐷).𝑅𝑅𝑟𝑟                                                           (19) 

where 𝐷𝐷 is a weight parameter between [0, 1], which is usually defined by the stakeholders based on the 
specific scenario and priority. 

2.5 System Reliability and Post-earthquake Restoration 
Prioritization 

2.5.1  System Reliability 

System reliability R is the probability that a system can maintain its functionality while suffering from 
some extent of disruption. It is an important performance indicator for hazard resilience since it can 
provide an estimation of the system serviceability including uncertainties and relative importance of 
different links in terms of resilience performance, which is defined as: 

𝑅𝑅(𝜀𝜀) = 𝑃𝑃(𝑅𝑅𝐼𝐼𝑀𝑀 ≥ 𝜀𝜀)                                                              (20) 
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where 𝑅𝑅𝐼𝐼 is the resilience index of the system; 𝑀𝑀 is the size of the samples using heuristic method; 𝜀𝜀 
is the level-of-performance (LOP) of the disrupted transportation network specified by stakeholders, and 
it is a ratio between 0 and 1 being used as a criterion to assess whether the reduced serviceability of the 
disrupted network is acceptable or not.  

2.5.2  Resilience-based Post-earthquake Bridge Restoration Prioritization 

Due to usually limited resources, it is important for decision makers to optimize the resources on pre-
disaster preventive strengthening and post-hazard recovery efforts. Accordingly, the stakeholders often 
would need to know the priorities of bridges in terms of these preventive and recovery efforts before and 
after hazards. In addition, it is imperative to accommodate the uncertainties related to the seismic 
intensity, bridge fragility, travel time and safety during the assessment of the priorities. In this study, the 
restoration priority of a bridge is not only related to the importance of the bridge to the network, which 
means the difference between the performance indicators of the network when the bridge is intact, 
partially failed or totally failed, but also affected by the required repair time of the bridge. If a vulnerable 
bridge has a great impact on the network and takes relatively less time to repair, it should be prioritized 
during the restoration. When considering the priorities of different bridges under a given state, a rational 
way is to optimize the reconstruction sequence to maximize the resilience index Z over time:  

Maximize 𝑍𝑍 = ∫ 𝑅𝑅𝐼𝐼(𝑆𝑆)𝑚𝑚𝑆𝑆𝑇𝑇
0                                                         (21) 

where 𝑍𝑍 is the integration of the resilience index over the recovery time; T is the total recovery time of the 
system which is defined as the sum of the repair times of all the damaged bridges.  

The sequence rankings are direct indicators for the restoration priorities of bridges under a given state. 
Among the damaged bridges, the smaller a bridge’s repair sequence ranking is, the higher prioritization 
the bridge would receive. Considering the uncertainties in earthquakes and bridge failures, it is important 
to apply the Monte Carlo Simulation or Latin Hypercube Sampling to generate possible damage states of 
the bridges and develop the repair sequences of different bridges under each generated state. The mean 
restoration sequence (MRS) of any bridge 𝑖𝑖 considering uncertainties is defined as: 

𝑀𝑀𝑅𝑅𝑆𝑆𝑖𝑖 = ∑ 𝑇𝑇𝑚𝑚𝑞𝑞𝑖𝑖,𝑚𝑚𝑀𝑀
1
𝑀𝑀

 , 𝐷𝐷 ∈ [1,𝑀𝑀]                                                      (22) 

where 𝑀𝑀𝑅𝑅𝑆𝑆𝑖𝑖 is the MRS of bridge 𝑖𝑖 , 𝑀𝑀 is the size of the samples using heuristic method, and 𝑆𝑆𝐷𝐷𝑞𝑞𝑖𝑖,𝑚𝑚 is 
the restoration sequence of bridge 𝑖𝑖 under scenario 𝐷𝐷. As discussed earlier, MRS incorporates the failure 
rates of different bridges. However, when planning the post-hazard restoration of damaged bridges with 
limited resources, it is more meaningful for stakeholders to know which bridge to repair first and then the 
next for any given damage scenario. Thus, it is necessary to eliminate the effect of bridge failure rate on 
MRS when deriving the post-hazard restoration priority of bridges.  

Therefore, the bridge priority index is defined as: 

𝑃𝑃𝑅𝑅𝑖𝑖 = 𝑛𝑛∗(1−𝑃𝑃𝑓𝑓𝑖𝑖)
𝑀𝑀𝑀𝑀𝑇𝑇𝑖𝑖

  , 𝑃𝑃𝑓𝑓𝑖𝑖 ∈ (0,1)                                                  (23) 

where 𝑃𝑃𝑅𝑅𝑖𝑖 is the post-hazard restoration priority index of bridge 𝑖𝑖, 𝑚𝑚 is the number of bridges in the 
network, and 𝑃𝑃𝑓𝑓𝑖𝑖 is the failure rate of bridge 𝑖𝑖. The bigger 𝑃𝑃𝑅𝑅 is, the more prioritized the bridge should 
be. The proposed 𝑃𝑃𝑅𝑅 is a comprehensive prioritization indicator related not only to the network topology 
and bridge locations but also to origin-destination matrix and bridge repair times. 
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3. CASE STUDY 

3.1 Centerville Transportation Network 

Figure 3.1 shows the basic traffic network of a virtual community called Centerville located in 
earthquake-prone areas (Ellingwood et al. 2016). Following existing studies on this virtual community, 
the earthquakes are with Richter Magnitude between 5 and 7.25, depth of 10 kilometers and epicenter 
longitude and latitude coordinates of [-97.20, 35.20]. Some basic information of the network is shown in 
Table 3.1 and the length of each link is calculated based on the geographic information of the community. 
There are 20 zones in the community. Each of the 20 nodes in Figure 3.1 is the center of a zone in the 
community. Most of the industry or companies are in the I zone (industrial areas); most of the schools, 
universities, markets, shopping centers and recreational facilities are in the P zones (Public areas); and 
most of the residents live in the R zones (residential areas). In this study, only bridge damages may cause 
the links to be totally or partially disrupted. Nine out of the thirty-three roads/links are therefore 
vulnerable to earthquakes due to the existence of bridges (B1-B9) on these links (marked in Figure 3.1). 
There are nine types of bridges in the community with: multi-span continuous (MSC) concrete, slab, and 
steel bridges; multi-span simple supported (MSSS) concrete girder, concrete box girder, steel girder and 
slab bridges; and simple supported (SS) concrete girder and steel girder bridges. The parameters in Table 
3.1 are determined based on the link information and the parameters in Table 3.2 and Table 3.3 are 
derived from the microscopic traffic flow simulation model. When comparing Centerville’s transportation 
network to real-world ones, it has the similar size as a small to medium sized city’s transportation 
network. So, the population is assumed to be 120,000 based on the traffic capacity of the network. 

 

Figure 3.1  Transportation network of Centerville 
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Table 3.1  Link characteristics 

Link# Zone1 Zone2 Length (km) No. of lanes Bridges Bridge longitudes Bridge latitude 

1 I1 I2 1.94 1 0   

2 I1 P1 1.59 1 MSC Concrete -97.479543 35.256638 
3 I1 R1 2.48 1 0   

4 I2 P2 1.62 1 0   

5 I2 P3 1.31 1 0   

6 I2 R1 1.55 1 0   

7 I3 I4 1.62 1 0   

8 I3 P3 1.57 1 0   

9 I3 R5 2.02 2 0   

10 I4 I6 2.02 1 0   

11 I5 P5 3.07 2 0   

12 I5 R4 1.31 1 0   

13 I5 R7 1.57 1 SS Steel -97.461509 35.226897 
14 I6 P6 2.88 1 MSSS concrete -97.460889 35.212719 
15 I6 R5 1.61 1 0   

16 I7 P6 2.21 1 0   

17 I7 R7 1.62 1 0   

18 P1 R2 2.38 1 MSSS conc box -97.452268 35.197926 
19 P1 R3 2.97 1 0   

20 P2 P4 1.32 2 0   

21 P3 P4 1.44 2 0   

22 P3 R1 2.03 1 0   

23 P4 P5 2.39 2 MSC Slab -97.459936 35.256156 
24 P4 R5 1.68 2 0   

25 P5 R3 1.31 2 0   

26 P5 R6 1.91 2 MSSS slab -97.443390 35.221606 
27 P6 R6 1.65 1 0   

28 P6 R7 2.58 1 0   

29 R2 R3 1.95 1 0   

30 R2 R4 3.52 1 MSSS steel -97.427446 35.245770 
31 R3 R4 3.07 1 SS concrete -97.430203 35.237922 
32 R5 R6 2.88 2 MSC Steel -97.413721 35.220139 
33 R6 R7 1.99 1 0     
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Table 3.2  Estimated parameters of BPR functions for normal traffic 

Link# 𝑆𝑆0 (min) 𝛼𝛼 𝛽𝛽 𝐶𝐶 (veh/h) 

1 2.21 0.093 7.397 745 
2 1.83 0.111 6.767 745 
3 2.63 0.070 7.671 745 
4 1.83 0.111 6.767 745 
5 1.57 0.100 7.761 745 
6 1.83 0.111 6.767 745 
7 1.83 0.111 6.767 745 
8 1.83 0.111 6.767 745 
9 2.21 0.093 7.397 1490 
10 2.21 0.093 7.397 745 
11 3.11 0.052 8.054 1490 
12 1.57 0.100 7.761 745 
13 1.83 0.111 6.767 745 
14 3.11 0.052 8.054 745 
15 1.83 0.111 6.767 745 
16 2.21 0.093 7.397 745 
17 1.83 0.111 6.767 745 
18 2.63 0.070 7.671 745 
19 3.11 0.052 8.054 745 
20 1.57 0.100 7.761 1490 
21 1.57 0.100 7.761 1490 
22 2.21 0.093 7.397 745 
23 2.63 0.070 7.671 1490 
24 1.83 0.111 6.767 1490 
25 1.57 0.100 7.761 1490 
26 2.21 0.093 7.397 1490 
27 1.83 0.111 6.767 745 
28 2.63 0.070 7.671 745 
29 2.21 0.093 7.397 745 
30 3.63 0.066 6.904 745 
31 3.11 0.052 8.054 745 
32 3.11 0.052 8.054 1490 
33 2.21 0.093 7.397 745 
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Table 3.3  Estimated parameters of BPR functions for disrupted traffic 

Link# 𝑆𝑆0 (min) 𝛼𝛼 𝛽𝛽 𝐶𝐶 (veh/h) 

23 2.67 0.273 4.267 820 
26 2.25 0.3063 4.344 820 
32 3.15 0.2429 4.106 820 

According to Eqs. (3-4), the peak ground acceleration (PGA) can be estimated using seismic attenuation 
laws. In this study, we employed the seismic attenuation law developed by Atkinson and Boore (1995). 
Their ground motion relation works for earthquakes of 4 ≤ 𝑀𝑀𝐿𝐿 ≤ 7.25 with epicentral depth of 10km and 
the mean PGA is estimated as: 

log(PGA) = c1 + c2(M𝐿𝐿 − 6) + c3(M𝐿𝐿 − 6)2 − log𝑅𝑅𝑚𝑚 − c4𝑅𝑅𝑚𝑚                            (24) 

where M𝐿𝐿 is the Richter magnitude; 𝑅𝑅𝑚𝑚 is the epicentral distance; c1, c2, c3, and c4 are parameters from 
regression analysis. According to the study by Atkinson and Boore (1995), c1 = 3.79, c2 = 0.298, c3 =
−0.0536, c4 = 0.00135 are adopted here primarily for demonstration purposes. For a specific region 
with sufficient historical data, more site-specific parameters can be used after calibration. It is assumed in 
this study that M𝐿𝐿 is a uniformly distributed random variable. 

In Eq. (1), Nielson and DesRoches (2007) defined bridge fragility as the probability that the seismic 
demand meets or exceeds its capacity. The median PGA value 𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 and dispersion 𝜁𝜁𝑖𝑖 of different 
damage states are shown in Table 3.4.  

Table 3.4 Median and dispersion values for seismic fragility curves of nine bridge classes 
(Nielson & DesRoches 2007) 

 Median PGA Values (g) 
Dispersion 𝜁𝜁𝑖𝑖  Bridge Class Extensive 𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 Complete 𝐷𝐷𝐷𝐷𝑚𝑚𝑖𝑖 

MSC concrete  0.75 1.03 0.7 
MSC slab  0.78 1.73 0.7 
MSC steel  0.39 0.5 0.55 
MSSS concrete  0.83 1.17 0.65 
MSSS concrete box  1.19 2.92 0.75 
MSSS slab  0.94 1.92 0.75 
MSSS steel 0.56 0.82 0.5 
SS concrete 2.62 3.64 0.9 
SS steel 1.52 2.49 0.55 

We take afternoon rush hour (5:00pm-6:00pm) as the study period. The origin-destination data is 
estimated by the Memphis travel demand model of Metropolitan Planning Organization (MPO) (Kimley-
Horn et al., 2007). There are nine trip purposes including journey to work, home based school, home 
based university, home based shopping, home based social-recreational, home-based pickup/drop-off, 
home based other, non-home based work and non-home based non-work. Some of the travel demand 
information is presented in Table 3.5. The population of the Memphis area is around 1,000,000. In the 
Memphis MPO model (Kimley-Horn et al., 2007), a survey was conducted about the transportation 
modes of people’s trips. About 99.8% of the trips are auto-based (drive alone, shared ride, bus, etc.). The 
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average occupancies of a shared ride and a bus are 2.4 and 7.2, respectively, according to Henao and 
Marshall (2019) and Federal Highway Administration (2018). The number of vehicle trips for every trip 
purpose of Centerville during the afternoon rush hour is estimated from the MPO model, assuming it has 
the same demographic properties as the Memphis area except population size. Table 3.6 lists the nine 
simplified trip purposes to fit the Centerville context. For any trip classification, if there are more than 
one origin-destination pairs, the trips will be evenly distributed between two different OD pairs due to the 
lack of enough information. Table 3.6 is based on people’s typical trip behavior, e.g., journey to work 
trips is classified as trips from industrial areas to residential areas because “go home from work” is very 
typical during the afternoon rush hour. The origin-destination data is randomly assigned to different OD 
pairs based on the estimated trips among the residential, industrial, and public areas, and the related 
information is shown in Table 3.7.  

Table 3.5  Memphis area travel demand information (Kimley-Horn et al., 2007) 
Trip Purpose Daily total trips Intrazonal trip % PM rush hour % 

Journey to work 949,895 0.027 0.123 
Home based school 334,407 0.056 0.044 
Home based university 50,197 0.057 0.044 
Home based shopping 199,141 0.101 0.086 
Home based social recreational 218,306 0.056 0.086 
Home based pickup/drop-off 182,627 0.074 0.086 
Home based other 546,012 0.011 0.086 
Non-home based work 122,174 0.075 0.037 
Non-home based non-work 457,157 0.055 0.037 

Table 3.6  Simplification of nine trip purposes 
Trip Purpose Trip origin and destination Classification 
Journey to work work to home Industrial to Residential 
Home based school 

public to home Public to Residential 
Home based university 
Home based shopping 

home to/from public Residential to/from Public 
Home based social recreational 
Home based pickup/drop-off Between home and any other 

places 
Residential to/from residential, 
public, and industrial areas Home based other 

Non-home based work work to public Industrial to Public 
Non-home based non-work intra public Public to Public 
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Table 3.7  Origin (column 1)-destination (row 1) data of afternoon rush hour 
 I1 I2 I3 I4 I5 I6 I7 P1 P2 P3 P4 P5 P6 R1 R2 R3 R4 R5 R6 R7 

I1 0 1 0 0 0 1 0 5 5 3 4 5 2 101 98 103 81 90 113 95 

I2 2 0 0 0 0 1 1 4 4 4 4 6 3 112 129 91 98 88 99 93 

I3 0 0 0 1 0 0 0 5 5 5 4 3 3 68 118 91 109 109 88 82 

I4 0 0 1 0 0 0 1 3 5 4 4 5 5 96 78 104 98 84 104 92 

I5 1 0 0 0 0 0 0 3 5 4 5 4 6 102 123 105 101 81 76 86 

I6 1 0 0 2 2 0 0 4 4 4 4 5 4 77 105 107 99 86 90 101 

I7 0 1 0 0 1 0 0 4 4 3 6 5 5 89 90 95 90 60 89 103 

P1 1 0 0 0 0 1 0 0 25 16 21 15 21 50 53 48 47 52 42 42 

P2 2 1 0 0 1 0 1 31 0 28 22 26 19 31 46 47 47 35 35 31 

P3 0 0 0 0 0 0 0 20 12 0 15 23 19 49 43 50 41 42 47 35 

P4 0 0 0 0 0 1 1 19 24 13 0 13 14 39 49 45 40 46 32 46 

P5 0 0 0 2 1 0 1 25 20 22 21 0 18 41 41 44 51 32 36 32 

P6 0 1 1 1 2 1 0 23 16 32 24 18 0 53 40 47 41 45 35 45 

R1 9 5 15 5 12 8 12 39 28 18 26 27 35 0 29 31 14 34 15 13 

R2 8 9 10 3 8 9 12 39 37 27 29 30 32 18 0 4 23 25 22 20 

R3 15 12 6 11 12 7 7 30 39 36 32 35 38 19 9 0 22 25 15 19 

R4 8 10 13 10 10 5 6 37 35 33 32 30 25 16 19 11 0 19 13 26 

R5 8 7 7 10 8 10 5 28 42 34 34 31 37 10 21 15 16 0 16 17 

R6 5 4 8 11 6 9 11 42 30 26 28 40 29 18 17 20 25 16 0 18 

R7 8 14 12 12 11 13 18 40 22 35 34 31 30 24 12 19 22 14 21 0 

For the virtual community adopted in this study, the traffic crash data as well as detailed traffic volume 
data are not available. Without losing generality in the demonstration, the assumed observed number of 
traffic crashes (NTC) during afternoon rush hour over 1 year is shown in Table 3.8, where AHT is the 
average hourly traffic and it is from the traffic assignment of the OD matrix in Table 3.7; 𝐿𝐿𝑤𝑤𝑤𝑤 and 𝑆𝑆𝑤𝑤𝑤𝑤 are 
the length and the construction time of the work zone; 𝐿𝐿𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘 is the link length; and 𝑆𝑆𝑜𝑜𝑏𝑏 is the observation 
time (1 year for this case). Poisson regression (Eqs. (9-11)) analysis gives coefficients β =
−0.12754; 0.4382; 0.1449; 0.8198; 0.7548 for constant, AHT, 𝐿𝐿𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘, 𝐿𝐿𝑤𝑤𝑤𝑤/𝐿𝐿𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘 and 𝑆𝑆𝑤𝑤𝑤𝑤 /𝑆𝑆𝑜𝑜𝑏𝑏, 
respectively. In this study, it is assumed that there is no work zone in the pre-disaster period and the work 
zones during the long-term recovery period are only caused by the bridges suffering extensive and 
complete damage states which need repair. The ratios of bridge lengths to their link lengths are randomly 
generated between [0.05, 0.15]. 
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Table 3.8  Parameters and observed number of crashes of the system 
Link # AHT (k) 𝐿𝐿𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘 𝐿𝐿𝑤𝑤𝑤𝑤/𝐿𝐿𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘 𝑆𝑆𝑤𝑤𝑤𝑤 /𝑆𝑆𝑜𝑜𝑏𝑏 NTC(1 year) 

1 0.250 1.945 0.037 0.547 2 
2 0.993 1.594 0.078 0.139 2 
3 0.204 2.482 0.659 0.149 3 
4 0.062 1.625 0.556 0.258 2 
5 0.529 1.312 0.254 0.841 3 
6 0.143 1.548 0.760 0.254 3 
7 0.042 1.621 0.028 0.814 2 
8 0.687 1.574 0.351 0.244 2 
9 0.486 2.023 0.305 0.929 4 

10 0.200 2.023 0.612 0.350 3 
11 0.341 3.065 0.636 0.197 3 
12 0.855 1.312 0.149 0.251 2 
13 0.385 1.574 0.392 0.616 3 
14 0.423 2.882 0.356 0.473 3 
15 0.543 1.605 0.517 0.352 3 
16 0.269 2.207 0.567 0.831 4 
17 0.376 1.620 0.604 0.585 3 
18 0.350 2.376 0.221 0.550 3 
19 0.766 2.969 0.544 0.917 6 
20 0.338 1.324 0.524 0.286 2 
21 1.521 1.441 0.130 0.757 4 
22 0.666 2.032 0.095 0.754 3 
23 1.750 2.391 0.399 0.380 5 
24 0.640 1.680 0.768 0.568 4 
25 1.702 1.312 0.272 0.076 3 
26 0.943 1.908 0.468 0.054 3 
27 0.545 1.651 0.179 0.531 3 
28 0.480 2.584 0.601 0.779 5 
29 0.228 1.949 0.204 0.934 3 
30 0.104 3.519 0.405 0.130 2 
31 0.403 3.065 0.559 0.569 4 
32 0.608 2.881 0.713 0.469 4 
33 0.598 1.992 0.767 0.012 3 

With LOP 𝜀𝜀 = 0.8 and   𝐷𝐷 = 0.5, Monte Carlo approach is used to simulate the PGA with 1,000,000 
samples and Latin Hypercube sampling is adopted to simulate bridge damage states with 1,000 samples. 
Applying Eqs. (12-20) in Matlab 2020, the results are shown in Table 3.9 and Figure 3.2-Figure 3.4. It is 
found from Table 3.9 that the increase of the 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇 in terms of percentage is like but a little less than the 
increase of 𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹 as compared to the respective pre-disaster values, 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇0 and 𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹0. It is likely because 
traffic crashes are very sensitive to the presence of work zones, which is in accordance with the large 
coefficient values for 𝐿𝐿𝑤𝑤𝑤𝑤/𝐿𝐿𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘 and 𝑆𝑆𝑤𝑤𝑤𝑤 /𝑆𝑆𝑜𝑜𝑏𝑏. Figure 3.2-Figure 3.4 show that the post-hazard 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇 and 
𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹 for most sampled scenarios are concentrated within small ranges near 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇0 and 𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹0  
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respectively and the system RI values are mostly close to 1. This phenomenon is mainly due to the low 
failure rate of the bridges when the Richter magnitude is low. In Figure 3.2, when TSTT is between 160 
and 205, the cumulative distribution function (CDF) increases slowly. It may be because the failures of a 
certain bridge or specific combinations of bridges just have a very limited impact on the system travel 
time. If a vulnerable link has some alternative routes with similar travel time, its failure may not 
significantly impair the traffic efficiency of the system. Compared to Figure 3.2, Figure 3.3 has a 
smoother increase in the curve possibly because TSCF is very sensitive to the existence of work zones, 
which complies with the coefficient values of the Poisson regression. For instance, if some links as 
discussed above are partially closed, the system travel time doesn’t increase considerably, but the number 
of traffic crashes may increase because of the existence of work zones. Figure 3.4(a) shows that CDF has 
almost no increase from 0.5-0.65 and 0.9-1, a slow increase from 0.65-0.8, a rapid increase from 0.8-0.9, 
and a dramatic increase at 1. Since the resilience index is based on both TSTT and TSCF, such 
phenomenon can be explained by the observed trends in the CDF curves of TSTT and TSCF. We fit the 
system resilience to various probability distributions and found out that Beta distribution had the best fit. 
Figure 3.4(b) shows Beta distribution fits the system resilience very well at most points. So, the Beta 
distribution may be used to estimate the system resilience. 

Table 3.9  System indices 
System index Value 
Pre-disaster 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇0 (min/hour) 150.85 
Pre-disaster 𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹0 (/year) 59.66 
Post-hazard mean 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇 (min/hour) 171.50 
Post-hazard mean 𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹 (/year) 68.80 
Increase in 𝑇𝑇𝑆𝑆𝑇𝑇𝑇𝑇 (%) 13.69 
Increase in 𝑇𝑇𝑆𝑆𝐶𝐶𝐹𝐹 (%) 15.32 
System reliability 0.85 
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Figure 3.2  Cumulative distribution of TSTT 

 

  

Figure 3.3  Cumulative distribution of TSCF 
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(a) Cumulative distribution of system resilience index 

 

(b) Histogram of system resilience index 

Figure 3.4  Distribution of system resilience index 

The impacts of earthquake intensity and LOP on the system reliability are also studied and the results are 
presented in Figure 3.5 and Figure 3.6. It is found in Figure 3.5 that the system reliability R decreases 
more slowly at lower earthquake intensities, and then decreases more quickly but almost linearly at higher 
magnitudes. As expected, a stronger earthquake will cause a higher chance of damages on the bridges, 
and in turn, lower the system resilience index and reliability of the whole system. Apparently when the 
earthquake intensity is low, almost no bridge fails, which may be the reason for the slower drop in the 
system reliability at the lower magnitudes. In Figure 3.6, it is found that the system resilience index 
remains stable around 1 when the level-of-performance (LOP) is low.  It is because the network remains a 
certain level of functionality, even under the worst bridge damage situations. So, the network meets the 
low LOP in almost all the sampled damage scenarios. Then system reliability slowly decreases when LOP 
is between 0.6-0.8. It is because some severely damaged scenarios can no longer meet the increasing 
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LOP. The failures of the most important bridges or bridge combinations happen during this interval, and 
the damage of any of these bridges or bridge combinations will greatly reduce the system performance. 
When the LOP is between 0.8-0.9, the system reliability quickly decreases, representing a deteriorating 
condition from the system resilience perspective. It means when the LOP is high, the network with 
failures of even a very limited number of bridges or a certain bridge that have limited importance to the 
network performance cannot meet the performance criterion. The selection of LOP value in this interval 
will ensure the network doesn’t suffer any major damage and remains a very high level of functionality. 
So, it is the reasonable interval for LOP values. 

 

Figure 3.5  System reliability as a function of Richter magnitude 

 

 

Figure 3.6  System reliability as a function of level-of-performance 
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3.2 Post-earthquake Bridge Restoration Prioritization 

Due to the relatively low failure rates for bridges, none or just few of the bridges are damaged in most of 
the possible states generated from Latin Hypercube sampling. In this case, we would restore the damaged 
(extensive damage or higher) bridges in the best sequences while the restoration sequences of fully 
functional (lower than extensive damage) bridges are set to be the last. There is a total of 9 bridges in the 
network. Assuming the repair time for bridges B1 to B9 are 98, 74, 99, 90, 79, 83, 85, 97, and 77 days 
respectively if they are damaged, the optimization is based on Eqs. (21-23) and is derived from the 
Greedy Algorithm, and the result is presented in Figure 3.7. It is found that Bridge 9 on link (I5, R7) has 
the highest priority due to the network topology, bridge location, etc. From Figure 3.1 and Table 3.2, we 
can tell Bridge 9 is very important to trips between OD pairs including (I5, R7), (R4, R7), (I5-I7), (P6, 
I5), (P6, R4), (I7, R4) and so on. All these trips don’t have alternatives with similar travel time. Among 
these OD pairs, (I5, R7), (P6, R4), (I7, R4), and (R4, R7) have considerable number of trips. A great 
increase in the travel time and the number of traffic crashes can be expected when Bridge 9 suffers 
extensive or complete damages. Similarly, Bridge 7 has the least priority because of the relatively 
insignificant location in the graph in terms of travel time and safety. Figure 3.1 and Table 3.2 show 
Bridge 7 is significant to trips between (R2, R4) and has some impact on trips between (I5, R2) and (R2, 
R7). The travel demand between (R2, R4) is not big and the trips between (I5, R2) and (R2, R7) don’t 
rely on link (R2, R4) too much. For trips that need to go between P1 and R4, link (R2, R4) is not an 
essential choice because an efficient alternative route is available, say (P1-R3-R4). 

 

Figure 3.7  Post-hazard restoration priority for different bridges 
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4. CONCLUSIONS AND DISCUSSIONS 

Long-term recovery is a very important stage following any major hazard or incident. A framework of 
modeling resilience-related performance of a transportation network was developed from both travel time 
and traffic safety perspectives. In the model, uncertainties in the earthquake information and fragility of 
the bridges were addressed to simulate real-world earthquake scenarios and possible disconnected or 
partial functioning bridges. A resilience performance indicator was introduced to evaluate the overall 
travel time and safety performance for the whole network and a bridge restoration prioritization index was 
proposed to evaluate the relative restoration priorities of different bridges in a traffic network. The 
priority information of bridges can help developing more efficient post-hazard long-term recovery 
strategy by keeping those bridges robust and functional in the long-term recovery stage. Based on the 
long-term recovery performance in terms of travel time and safety, the proposed model can assist on 
developing rational long-term recovery plan for a community with some partially functional bridges. 
Finally, the proposed framework was demonstrated in a hypothetical community located in earthquake-
prone areas and is at the risk of extensive earthquake attacks. This study has two main innovative 
contributions: (1) simulating the traffic performance of partially closed road segments in the network 
simulation and optimization, which offer useful tool to capture the time-progressive recovery process; and 
(2) integrating both traffic efficiency and safety into the resilience assessment and recovery prioritization. 
Despite the approximations and relatively simpler models being adopted, it is noted that the proposed 
approach is general enough to be extended to more advanced models with more site-specific data without 
losing generality.  

This study, however, also has some limitations. The traffic crash frequency was estimated with Poisson 
model due to the popularity, simplicity, and low requirement of site-specific data. There are some more 
advanced traffic crash frequency modeling techniques which can be applied in the proposed framework 
when more actual historical crash data are available for parameter calibrations to consider site-specific 
characteristics. Also, due to the lack of data and computation complexity, we didn’t consider the 
deterioration effect (García-Segura et al., 2017) of bridges and the interdependency between the 
transportation network and other lifeline systems, which are also important for studying community 
resilience.  

Following the same methodology, more specific study on a community with realistic data can be 
conducted in the future. For potential future study, more advanced traffic safety modeling techniques like 
Negative Binomial model and comprehensive site-specific traffic accident data will be applied to estimate 
the community's traffic crash frequency. Dynamic traffic assignment algorithms will be used to model the 
change of travel demand and traffic flow during a day instead of just focusing on the traffic performance 
during the afternoon rush hour. Infrastructure deterioration effect and interdependency among different 
lifeline systems will be considered to make the simulation more sophisticated and accurate. 



 
25 

REFERENCES 
 

Adachi, T., & Ellingwood, B. (2007). Impact of infrastructure interdependency and spatial correlation of 
seismic intensities on performance assessment of a water distribution system. In Proceedings of the 10th 
International Conference on Applications of Statistics and Probability in Civil Engineering. 

Akcelik, R. (1996). Relating flow, density, speed and travel time models for uninterrupted and interrupted 
traffic. Traffic Engineering+ Control, 37(9), 511-16. 

Akiyama, M., Frangopol, D. M., & Ishibashi, H. (2020). Toward life-cycle reliability-, risk-and 
resilience-based design and assessment of bridges and bridge networks under independent and interacting 
hazards: emphasis on earthquake, tsunami and corrosion. Structure and Infrastructure Engineering, 16(1), 
26-50. 

Alipour, A., & Shafei, B. (2016). Seismic resilience of transportation networks with deteriorating 
components. Journal of Structural Engineering, 142(8), C4015015. 

Argyroudis, S. A., Mitoulis, S. A., Hofer, L., Zanini, M. A., Tubaldi, E., & Frangopol, D. M. (2020). 
Resilience assessment framework for critical infrastructure in a multi-hazard environment: Case study on 
transport assets. Science of The Total Environment, 714, 136854. 

Argyroudis, S. A., Mitoulis, S. Α., Winter, M. G., & Kaynia, A. M. (2019). Fragility of transport assets 
exposed to multiple hazards: State-of-the-art review toward infrastructural resilience. Reliability 
Engineering & System Safety, 191, 106567. 

Atkinson, G. M., & Boore, D. M. (1995). Ground-motion relations for eastern North America. Bulletin of 
the Seismological Society of America, 85(1), 17-30. 

Blackman, D., Nakanishi, H., & Benson, A. M. (2017). Disaster resilience as a complex problem: Why 
linearity is not applicable for long-term recovery. Technological Forecasting and Social Change, 121, 89-
98. 

Bocchini, P., & Frangopol, D. M. (2012a). Restoration of bridge networks after an earthquake: 
Multicriteria intervention optimization. Earthquake Spectra, 28(2), 426-455. 

Bocchini, P., & Frangopol, D. M. (2012b). Optimal resilience-and cost-based postdisaster intervention 
prioritization for bridges along a highway segment. Journal of Bridge Engineering, 17(1), 117-129. 

Campbell, K. W. (1981). Near-source attenuation of peak horizontal acceleration. Bulletin of the 
Seismological Society of America, 71(6), 2039-2070. 

Chang, L., Peng, F., Ouyang, Y., Elnashai, A. S., & Spencer Jr, B. F. (2012). Bridge seismic retrofit 
program planning to maximize postearthquake transportation network capacity. Journal of Infrastructure 
Systems, 18(2), 75-88. 

Chang, L., Elnashai, A. S., & Spencer Jr, B. F. (2012). Post-earthquake modelling of transportation 
networks. Structure and infrastructure Engineering, 8(10), 893-911. 



 
26 

Chang, S. E., & Nojima, N. (2001). Measuring post-disaster transportation system performance: the 1995 
Kobe earthquake in comparative perspective. Transportation Research Part A: Policy and Practice, 
35(6), 475-494. 

Chen, Y. W., & Tzeng, G. H. (1999). A fuzzy multi-objective model for reconstructing the post-quake 
road-network by genetic algorithm. International Journal of Fuzzy Systems, 1(2), 85-95. 

Cho, S., Gordon, P., Richardson, H. W., Moore, J. E., & Shinozuka, M. (2000). Analyzing transportation 
reconstruction network strategies: a full cost approach. Review of Urban & Regional Development 
Studies, 12(3), 212-227. 

Dong, Y., & Frangopol, D. M. (2015). Risk and resilience assessment of bridges under mainshock and 
aftershocks incorporating uncertainties. Engineering Structures, 83, 198-208. 

El-Anwar, O., Ye, J., & Orabi, W. (2015). Efficient optimization of post-disaster reconstruction of 
transportation networks. Journal of Computing in Civil Engineering, 30(3), 04015047. 

El-Anwar, O., Ye, J., & Orabi, W. (2015). Innovative linear formulation for transportation reconstruction 
planning. Journal of Computing in Civil Engineering, 30(3), 04015048. 

Ellingwood, B, Cutler, H., Gardoni, P., Peacock, W., van de Lindt, J. and Wang, N. (2016). “The Centerville 
virtual community: a fully integrated decision model of interacting physical and social infrastructure 
systems”, Journal of Sustainable and Resilient Infrastructure, 1, 3-4, 95-107. 

Federal Highway Administration. (2018). Average Vehicle Occupancy Factors for Computing Travel 
Time Reliability Measures and Total Peak Hour Excessive Delay Metrics. Retrieved from 
https://www.fhwa.dot.gov/tpm/guidance/avo_factors.pdf 

Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval research logistics 
quarterly, 3(1-2), 95-110. 

García-Segura, T., Yepes, V., & Frangopol, D. M. (2017). Multi-objective design of post-tensioned 
concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 
56(1), 139-150. 

Henao, A., & Marshall, W. E. (2019). The impact of ride-hailing on vehicle miles traveled. 
Transportation, 46(6), 2173-2194. 

Hou, G., Chen, S., Zhou, Y., & Wu, J. (2017). Framework of microscopic traffic flow simulation on 
highway infrastructure system under hazardous driving conditions. Sustainable and Resilient 
Infrastructure, 2(3), 136-152. 

Hou, G., & Chen, S. (2019). An Improved Cellular Automaton Model for Work Zone Traffic Simulation 
Considering Realistic Driving Behavior. Journal of the Physical Society of Japan, 88(8), 084001. 

Hu, Z. H., Sheu, J. B., & Xiao, L. (2014). Post-disaster evacuation and temporary resettlement 
considering panic and panic spread. Transportation research part B: methodological, 69, 112-132. 

Janson, B. N. (1991). Dynamic traffic assignment for urban road networks. Transportation Research Part 
B: Methodological, 25(2-3), 143-161. 

https://www.fhwa.dot.gov/tpm/guidance/avo_factors.pdf


 
27 

Kameshwar, S., Misra, S., & Padgett, J. E. (2020). Decision tree based bridge restoration models for 
extreme event performance assessment of regional road networks. Structure and Infrastructure 
Engineering, 16(3), 431-451. 

Kilanitis, I., & Sextos, A. (2019). Impact of earthquake-induced bridge damage and time evolving traffic 
demand on the road network resilience. Journal of traffic and transportation engineering (English 
edition), 6(1), 35-48. 

Kimley-Horn and Associates, Inc., Cambridge Systematics, Inc., and HNTB. “Technical Memorandum: 
Memphis Travel Demand Model” Prepared for Memphis MPO, 2007. 

Kozin, F., & Zhou, H. (1990). System study of urban response and reconstruction due to earthquake. 
Journal of Engineering Mechanics, 116(9), 1959-1972. 

Kucharski, R., & Drabicki, A. (2017). Estimating Macroscopic Volume Delay Functions with the Traffic 
Density Derived from Measured Speeds and Flows. Journal of Advanced Transportation, 2017. 

Lee, C., & Machemehl, R. B. (2005). Combined traffic signal control and traffic assignment: algorithms, 
implementation and numerical results. Southwest Region University Transportation Center, Center for 
Transportation Research, University of Texas at Austin. 

Lipton, E. (2010). Devastation, Seen From a Ship. New York Times. 

Liu, L., Yang, D. Y., & Frangopol, D. M. (2020). Network-level risk-based framework for optimal bridge 
adaptation management considering scour and climate change. Journal of Infrastructure Systems, 26(1), 
04019037. 

Lu, X., Cheng, Q., Xu, Z., Xu, Y., & Sun, C. (2019). Real-time city-scale time-history analysis and its 
application in resilience-oriented earthquake emergency responses. Applied Sciences, 9(17), 3497. 

Liu, Y., McNeil, S., Hackl, J., & Adey, B. T. (2020). Prioritizing transportation network recovery using a 
resilience measure. Sustainable and Resilient Infrastructure, 1-12. 

Merschman, E., Doustmohammadi, M., Salman, A. M., & Anderson, M. (2020). Postdisaster decision 
framework for bridge repair prioritization to improve road network resilience. Transportation research 
record, 2674(3), 81-92. 

Nielson, B. G., & DesRoches, R. (2007). Analytical seismic fragility curves for typical bridges in the 
central and southeastern United States. Earthquake Spectra, 23(3), 615-633. 

Orabi, W., El-Rayes, K., Senouci, A. B., & Al-Derham, H. (2009). Optimizing postdisaster reconstruction 
planning for damaged transportation networks. Journal of Construction Engineering and Management, 
135(10), 1039-1048. 

Orabi, W., Senouci, A. B., El-Rayes, K., & Al-Derham, H. (2010). Optimizing resource utilization during 
the recovery of civil infrastructure systems. Journal of management in engineering, 26(4), 237-246. 

Padgett, J. E., & DesRoches, R. (2009). Retrofitted bridge fragility analysis for typical classes of 
multispan bridges. Earthquake Spectra, 25(1), 117-141. 



 
28 

Padgett, J. E., & DesRoches, R. (2007). Bridge functionality relationships for improved seismic risk 
assessment of transportation networks. Earthquake Spectra, 23(1), 115-130. 

Sun, W., Bocchini, P., & Davison, B. D. (2020). Resilience metrics and measurement methods for 
transportation infrastructure: the state of the art. Sustainable and Resilient Infrastructure, 5(3), 168-199. 

US Bureau of Public Roads. Office of Planning. Urban Planning Division. (1964). Traffic Assignment 
Manual for Application with a Large, High Speed Computer. US Department of Commerce. 

Wakabayashi, H., & Kameda, H. (1992). Network performance of highway systems under earthquake 
effects: A case study of the 1989 Loma Prieta earthquake. In Proceedings of the US-Japan Workshop on 
Earthquake Disaster Prevention for Lifeline Systems. Tsukuba Science City, Japan (Vol. 215232). 

Wang, Z., & Jia, G. (2019). Efficient sample-based approach for effective seismic risk mitigation of 
transportation networks. Sustainable and Resilient Infrastructure, 1-16. 

Wardrop, J. G. (1982). Some theoretical aspects of road traffic research. Proceedings of the Institute of 
Civil Engineers, (Part II), 325-378. 

Washington, S. P., Karlaftis, M. G., & Mannering, F. (2010). Statistical and econometric methods for 
transportation data analysis. Chapman and Hall/CRC. 

Wu, Y., & Chen, S. (2019). Resilience modeling of traffic network in post-earthquake emergency medical 
response considering interactions between infrastructures, people, and hazard. Sustainable and Resilient 
Infrastructure, 4(2), 82-97. 

Yang, H., Ozbay, K., Ozturk, O., & Xie, K. (2015). Work zone safety analysis and modeling: a state-of-
the-art review. Traffic injury prevention, 16(4), 387-396. 

Yi, F., & Tu, Y. (2018). An evaluation of the paired assistance to disaster-affected areas program in 
disaster recovery: The case of the Wenchuan earthquake. Sustainability, 10(12), 4483. 

Zamanifar, M., & Seyedhoseyni, S. M. (2017). Recovery planning model for roadways network after 
natural hazards. Natural Hazards, 87(2), 699-716. 

Zhang, W., & Wang, N. (2016). Resilience-based risk mitigation for road networks. Structural Safety, 62, 
57-65. 

Zhao, T., & Zhang, Y. (2020). Transportation infrastructure restoration optimization considering mobility 
and accessibility in resilience measures. Transportation Research Part C: Emerging Technologies, 117, 
102700. 

Zhou, Y., Wang, J., & Sheu, J. B. (2019). On connectivity of post-earthquake road networks. 
Transportation Research Part E: Logistics and Transportation Review, 123, 1-16. 

 


	1. INTRODUCTION AND LITERATURE REVIEW
	1.1 Background
	1.2 Organization of This Report

	2. RESILIENCE ASSESSMENT FRAMEWORK OF DISRUPTED TRANSPORTATION NETWORK IN LONG-TERM RECOVERY STAGE
	2
	2.1 Seismic Fragility of Bridges
	2.2 Travel Time Estimate on Post-earthquake Urban Arterials
	1.
	2.
	2.1.
	2.2.
	2.2.1 Post-earthquake Traffic on Urban Arterials
	2.2.2  Microscopic Traffic Flow Simulation Model

	2.3 Traffic Safety Risks of Partially Disrupted Infrastructures
	2.4 Resilience Index and Applications
	2.4.1  Traffic Assignment
	2.4.2  System Resilience Index

	2.5 System Reliability and Post-earthquake Restoration Prioritization
	2.5.1  System Reliability
	2.5.2  Resilience-based Post-earthquake Bridge Restoration Prioritization


	3. CASE STUDY
	3
	3.1 Centerville Transportation Network
	3.2 Post-earthquake Bridge Restoration Prioritization

	4. CONCLUSIONS AND DISCUSSIONS
	REFERENCES
	MPC_642_Technical Report Documentation Page.pdf
	Technical Report Documentation Page


