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ABSTRACT 

Transportation asset management requires timely information collection to inform relevant maintenance 
practices. Traditional data collection methods often necessitate manual operation or the use of specialized 
equipment, e.g., light detection and ranging (LiDAR), which can be labor-intensive and costly to 
implement. With advancements in computing techniques, artificial intelligence (AI) has emerged as a 
powerful tool for automatically detecting objects in images and videos. Therefore, this project aims to 
develop an implementable AI package that streamlines the inspection of transportation assets through 
automated processes. Specifically, a smartphone was mounted on the vehicle’s front windshield to record 
videos of transportation assets on both highways and local roads in Utah. These videos were then 
converted and processed into labeled images, which served as training and test datasets for the AI 
algorithms. Based on a deep learning framework, i.e., You Only Look Once (YOLO), we developed 
accurate and efficient AI algorithms to automatically detect and identify transportation assets, which 
include pavement marking issues, traffic signs, litter and trash, and steel guardrails and concrete barriers. 
The developed AI models demonstrate good performance in identifying targeted objects, achieving over 
85% accuracy. The AI package developed in this project is expected to enable timely and efficient 
information collection for transportation assets, thereby improving road safety. 
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EXECUTIVE SUMMARY 

Timely information collection and assessment of transportation assets are essential for the daily 
maintenance practices of state departments of transportation (DOTs). Traditional transportation asset 
assessment methods often rely on labor-intensive manual data collection or employ costly devices, such 
as light detection and ranging (LiDAR), which are prohibitive in frequent data collection due to high 
operational costs. With advancements in computing techniques, artificial intelligence (AI), including 
computer vision and deep learning, has demonstrated capabilities in automatic and accurate object 
detection, comparable to human vision. This project aims to explore the applicability of AI in 
transportation-related applications by developing reliable and accurate AI algorithms for automatic object 
identification. These AI models will focus on identifying pavement marking issues, traffic signs, trash and 
litter on the roads, and steel guardrails and concrete barriers. By integrating AI into transportation asset 
management, we aim to improve current practices, making them more efficient and cost-effective. 

This project began by reviewing the pros and cons of existing technologies for transportation asset data 
collection. Commonly used techniques include ground-penetrating radar, LiDAR, infrared thermography, 
and close-range photogrammetry. Among these, close-range photogrammetry is considered a reliable 
method for timely information collection without excessive cost. We also reviewed AI algorithms applied 
in transportation asset monitoring and inspection, including regional convolutional neural networks 
(RCNN), Faster RCNN, and You Only Look Once (YOLO). YOLO, a deep learning-based AI algorithm, 
excels in object detection with high accuracy and computational efficiency. While these AI algorithms 
have been widely used for pavement issue identification, there has been limited research on applying AI 
to detect pavement marking issues, trash and litter on roads, and steel guardrails and concrete barriers. 

To address this, we mounted a smartphone on a vehicle’s front windshield to collect videos of targeted 
transportation assets and issues on state highways and local roads in Utah. In total, approximately 31 
hours of videos were collected, capturing pavement markings, traffic signs, steel guardrails, concrete 
barriers, and roadside litter and trash. These videos were processed into labeled images to train robust AI 
algorithms. Using these labeled images as training and test data, we developed three AI models for the 
automatic detection of pavement marking issues, traffic signs, and litter and trash. Specifically, the AI 
model for pavement marking issues can detect faded white and yellow pavement markings. The traffic 
sign model can identify regulatory signs, speed-related signs, warning signs, and guide signs. The litter 
and trash model can detect white litter, black litter, dirt, and leaves on the roadside. Additionally, we 
developed a prototype AI model to identify steel guardrails and concrete barriers. Iterative training and 
tuning ensured the robust performance of these algorithms. The results show that the developed AI 
models achieve good performance, with over 85% accuracy in transportation asset identification. 

The mobile phone-based AI package developed in this project offers an accurate, efficient, and automated 
approach to collect and analyze transportation asset data. This enables more frequent inspection of 
transportation assets, ultimately improving road safety. 
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1. INTRODUCTION 

1.1 Background 

Transportation assets, such as pavement markings, traffic signs, and guardrails, are the backbone of our 
transportation systems, contributing to the overall safety and efficiency of our transportation network 
(Akofio-Sowah et al., 2014; FHWA, 2009). However, over time, these assets are subjected to various 
environmental factors, heavy usage, and natural wear and tear, which all lead to damage or deterioration 
(Sassani et al., 2021; S. Xu et al., 2021). For example, pavement markings and traffic signs may become 
faded or damaged, reducing their effectiveness in conveying important information to road users 
(Alzraiee et al., 2021; Kuang et al., 2024). Common issues with traffic signs include fading, damage, 
obstruction, and misplacement, which can lead to reduced visibility and misinterpretation by drivers 
(Campbell et al., 2019; Gudigar et al., 2016). Guardrails and barriers may experience corrosion or 
structural weaknesses, compromising their ability to protect vehicles and occupants in the event of a crash 
(Jin et al., 2024; Li et al., 2018). Also, objects such as plastic bottles, discarded packaging, or vehicle 
debris on the roadside can cause crashes by obstructing the road or creating hazards that lead to loss of 
control or tire damage (Chamberlin et al., 2021; Karimi and Faghri, 2021). Therefore, effective 
transportation asset management and maintenance is necessary to ensure their continued functionality and 
safety.  

Transportation asset management and maintenance needs periodic inspection of transportation asset 
conditions, such as evaluating the structural integrity, functionality, and visibility (FHWA, 2009; Sinha et 
al., 2017). Traditional methods of assessing transportation asset conditions have relied heavily on manual 
efforts or the use of specialized sensing equipment, e.g., light detection and ranging (LiDAR) and 
retroreflectometers. (Pike et al., 2011; Wei et al., 2021). These approaches are labor-intensive, time-
consuming, and costly to implement (Lin et al., 2022; Schnebele et al., 2015; Solla et al., 2014). Hence, 
there is an urgent need to develop a lightweight technique capable of assessing the conditions of 
transportation assets in a timely and accurate manner. 

With the rapid development of artificial intelligence (AI) techniques, there is now an opportunity to 
revolutionize the transportation asset assessment process. AI techniques, particularly deep learning and 
computer vision, have enabled object detection and image classification in various fields, including the 
automated assessment of transportation assets (Du et al., 2020; Ghosh and Smadi, 2021). AI algorithms 
are able to extract valuable insights by analyzing large volumes of data, such as images (Gopalakrishnan 
et al., 2017; Majidifard et al., 2020). Computing-based image analysis and object detection are similar to 
visual inspection by human inspectors (Spencer et al., 2019). Specific to inspecting transportation asset 
conditions, based on AI algorithms, developed models can be trained to identify patterns, anomalies, or 
signs of transportation asset issues that may need duplicate efforts through traditional manual inspections 
(Kawano et al., 2017; Liu et al., 2017; Park et al., 2023). An example of this application is the 
identification of pavement distresses, such as cracks and potholes (Abdellatif et al., 2020; Koch et al., 
2013). 

The advantage of AI-based approaches lies in their ability to automate the assessment process, providing 
more efficient and accurate results (Gao et al., 2021; Sun et al., 2024; Wei et al., 2021). Also, the use of 
AI in asset assessment can lead to cost savings by reducing the reliance on manual labor or expensive 
equipment (Gómez et al., 2022; Kuang et al., 2022). Compared with traditional methods, which are 
vulnerable to missing emerging issues between inspections, AI models can continuously analyze data and 
detect anomalies and potential problems as they arise (Karballaeezadeh et al., 2020). This continuous 
monitoring ensures maintenance activities can be scheduled more responsively, addressing issues before 
they escalate. Furthermore, these developed lightweight AI models can be integrated into existing asset 
management systems, allowing for real-time or near-real-time monitoring of asset conditions. This 
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enables state departments of transportation (DOTs) to proactively identify maintenance needs, prioritize 
repairs, and allocate resources effectively. 

Therefore, the objective of this project is to create precise and readily implementable AI models that 
streamline the inspection of transportation assets through automated processes. The proposed AI packages 
utilize a smartphone mounted on a vehicle’s front windshield to capture videos of the road. Based on 
these self-collected videos, this project further develops an AI package capable of automatically assessing 
the conditions of pavement markings, identifying traffic signs, and detecting litter along the roadside. We 
also created a prototype model for recognizing concrete barriers and steel guardrails. This delivered AI 
package offers an affordable solution that enables more frequent and efficient data collection for 
transportation asset maintenance purposes. This approach revolutionizes traditional asset management 
practices by providing a cost-effective means of acquiring valuable information and assessing the 
conditions in a timely manner. 

1.2 Research Objectives and Scopes 

The main research objective of the project is advancing transportation asset management through the 
application of AI techniques. This study, based on self-collected images, aims to develop a usable AI 
package that is capable of automatically assessing the condition of pavement marking, identifying traffic 
signs and steel guardrails/concrete barriers, as well as detecting litter and trash on the roads. Also, the 
performance of each task is evaluated respectively to verify the capability of leveraging a mobile phone as 
a lightweight and easily implementable data collection method to facilitate the inspection of 
transportation assets. 

To achieve these research objectives, four specific tasks are involved, illustrated as follows: 

Task 1. Literature review: a comprehensive literature review is conducted to explore and examine 
existing technologies and practices related to transportation asset collection and inspection, including 
emerging AI technologies.  

Task 2. Data collection: A mobile phone, mounted on a vehicle, is used to collect data by recording 
videos while driving on the highways and street roads of Utah. The capability of AI in transportation asset 
identification and condition assessment is pre-evaluated. 

Task 3. AI package development: Based on self-collected images and utilizing AI algorithms, multiple 
AI models are developed to inspect and identify transportation assets, including assessing the condition of 
pavement markings, identifying the various traffic signs, and detecting common litter on the roads. The 
performance of each model is evaluated.  

Task 4. AI package development (proof-of-concept): An AI prototype model is also developed to 
identify concrete barriers and steel guardrails. 

By achieving these research tasks, the project endeavors to contribute to improving transportation asset 
management practices. The development of a usable AI package for automatic asset detection, combined 
with the evaluation of mobile phones as data collection tools, is able to facilitate more efficient, accurate, 
and accessible transportation asset inspection This advancement has the potential to enhance the operation 
and maintenance of transportation assets and ultimately improve the overall condition and safety of 
transportation infrastructure. 
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1.3 Report Outline 

The report is structured into several sections. Section 2 reviews the pros and cons of current practices in 
transportation asset data collection and explores the existing applications of AI algorithms in transportation 
asset inspection. Section 3 introduces data collection, AI models, and accuracy metrics for evaluating the 
developed algorithms. Section 4 presents the results and performance of the AI models, covering the 
identification of pavement marking issues, traffic signs, and litter/trash, as well as a prototype model for 
steel guardrail and concrete barrier identification. Finally, Section 5 summarizes the key findings and 
provides recommendations for future work. 
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2. LITERATURE REVIEW 

2.1 Data Collection of Transportation Assets 

Various sensing techniques, such as ground penetrating radar (GPR), light detection and ranging 
(LiDAR), and infrared thermography (IRT), have been developed and utilized for the collection of 
transportation asset data, including pavement, pavement markings, and traffic signs. 

2.1.1 Ground Penetrating Radar (GPR) 

GPR, an electromagnetic-based geophysical method, utilizes radar pulses ranging from 200 mm to 3 m to 
image the subsurface. It employs either a ground-coupled antenna (60 cm to 3 m) or an air-coupled 
antenna (200–300 mm) (Schnebele et al., 2015). GPR is a non-destructive geophysical method used for 
subsurface imaging and mapping. It has proven to be an effective tool in various fields, such as civil 
engineering, geology, archaeology, and environmental studies (Iftimie et al., 2021; Tešić et al., 2021) 

GPR works based on the principle of electromagnetic wave propagation and interaction with subsurface 
materials, as shown in Figure 2.1. It operates by transmitting short pulses of electromagnetic energy into 
the ground using a transmitter and antenna system (Tešić et al., 2021). The transmitted energy travels 
through the subsurface and interacts with different materials, such as soil, rocks, and buried objects. When 
the transmitted energy encounters a boundary between materials with different dielectric permittivity or 
encounters buried objects, a portion of the energy is reflected back to the surface. The reflected energy, 
also known as the return signal, carries valuable information about the subsurface features and objects. A 
receiving antenna is used to capture the variations in the return signal. The antenna records the amplitude 
(magnitude) and arrival time of the reflected signal (Tong et al., 2020). By analyzing these variations, it is 
possible to determine the depth, location, and characteristics of subsurface objects, such as buried utilities, 
voids, geological layers, and archaeological artifacts. 

 

 

 
  

Figure 2.1 The principle of GPR 
(Khamzin et al., 2017) 
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GPR technology has demonstrated its utility in collecting and evaluating pavement conditions, making it 
an invaluable tool in pavement assessment based on the variation in dielectric permittivity within a 
pavement segment (Joshaghani and Shokrabadi, 2022; Khamzin et al., 2017). Different pavement 
conditions exhibit distinct dielectric permittivity values, allowing GPR to differentiate between poor-
quality and high-quality pavement (Khamzin et al., 2017; Vilbig, 2013). GPR can operate on moving 
survey vehicles, as depicted in Figure 2.2. This feature enhances its application in acquiring and 
evaluating pavement structures and materials. By utilizing GPR on moving vehicles, various pavement 
characteristics can be measured, including pavement layer thickness, void identification, and detection of 
pavement distress (Khamzin et al., 2017; Vilbig, 2013).  

 

 

 

Figure 2.2 GPR Mounted on A Survey Vehicle  
(Khamzin et al., 2017) 

Although GPR is a valuable technology, it has certain limitations in its application. One limitation is the 
requirement for operators to possess knowledge of both electromagnetic waves and pavement distress in 
order to interpret the results obtained from GPR surveys accurately (Tong et al., 2020). The interpretation 
of GPR data is usually complex and requires expertise to distinguish between various subsurface features 
and pavement conditions. Another limitation of GPR is its inability to provide precise horizontal 
information. While GPR can measure the depth and thickness of subsurface irregularities, it is not as 
accurate in determining the exact horizontal location of features (Schnebele et al., 2015). This means that 
while GPR can identify subsurface anomalies and variations, it may not provide precise spatial 
coordinates for mapping purposes. Additionally, GPR is primarily a subsurface detection method and is 
not suitable for collecting data on aboveground transportation assets such as traffic signs and barriers (Dai 
and Yan, 2014). Therefore, alternative methods or technologies should be employed to collect information 
on aboveground transportation assets. 

2.1.2 Light Detection and Ranging (LiDAR) 

LiDAR is another widely used technology in the field of transportation. Figure 2.3 illustrates the principle 
of LiDAR, which involves the measurement of ranges by targeting objects with a laser and measuring the 
time it takes for the reflected light to return to the receiver (Kaartinen et al., 2022).  
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Figure 2.3 The Principle of LiDAR 

LiDAR systems can be categorized based on the platforms on which the laser is mounted. Two common 
types are the terrestrial laser scanner (TLS) and mobile laser scanner (MLS) (Schnebele et al., 2015; 
Topo, 2020). The TLS is a ground-based remote sensing system typically mounted on static tripods. It 
scans objects in all directions by emitting laser pulses and capturing the reflected signals. Once a scan in 
one location is complete, the tripod can be moved to another position to capture data from different angles 
or cover new areas. TLS is often used for detailed scanning and data collection of specific objects or areas 
of interest. On the other hand, MLS enables the acquisition of 3D data using one or more laser scanners 
mounted on moving vehicles, unmanned aerial vehicles (UAVs), or helicopters (Kaartinen et al., 2022). 
Figure 2.4 depicts an MLS mounted on a moving vehicle. MLS systems capture laser data while the 
platform is in motion, allowing for the efficient and rapid collection of data over larger areas. MLS is 
commonly utilized for applications such as topographic mapping, road inventory, and infrastructure 
monitoring. 

Figure 2.4 Mobile LiDAR System on a Moving Vehicle 
(Olsen et al., 2018) 

LiDAR technology offers several advantages in transportation applications. It can generate highly 
accurate and detailed 3D point cloud data of transportation assets and has several advantages. First, it has 
high accuracy and resolution in transportation asset data collection. Second, this technique is not sensitive 
to the ambient environment of data collection, e.g., humidity or temperature (De Blasiis et al., 2021). 
However, LiDAR has its own limitations, including a much higher cost than other technologies (Ragnoli 
et al., 2018; Schnebele et al., 2015). Also, the operation and analysis of LiDAR data require expert 
knowledge, which introduces additional barriers to technology application (Farhadmanesh et al., 2021). 
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2.1.3 Infrared Thermography (IRT) 

IRT operates by measuring the amount of radiation emitted from an object in the infrared range (9–14μm) 
using infrared (IR) cameras (Schnebele et al., 2015). The measured radiation is affected by the emissivity 
and temperature of targeted objects, as well as surrounding weather and atmospheric conditions. The 
measured amount of thermal infrared radiation can then be converted into temperature, which is usable to 
indicate any anomalies of transportation assets based on the known difference in thermal properties 
between normal and defective areas (Garrido et al., 2018).  

Figure 2.5 provides examples of infrared images of pavement, demonstrating how thermal contrasts can 
highlight underlying issues. These images showcase the practical application of IRT in maintaining and 
improving transportation assets. 

IRT works by detecting the infrared radiation emitted by objects within the 9–14μm wavelength range 
using specialized IR cameras (Schnebele et al., 2015). This radiation detection is influenced by several 
factors, including the emissivity and temperature of the objects, as well as other environmental and 
atmospheric conditions. By analyzing the captured infrared radiation, thermal cameras can convert these 
readings into temperature values. These temperature measurements are critical for identifying anomalies 
in transportation infrastructure. Defective areas often have distinct thermal properties compared with 
normal areas, allowing IRT to identify issues such as subsurface defects, moisture infiltration, and 
structural weaknesses. For instance, in roadway pavement assessments, variations in temperature can 
reveal cracks, voids, and areas of poor adhesion, which are otherwise invisible to the naked eye (Garrido 
et al., 2018).  

Moreover, IRT is a non-contact and non-destructive testing method, making it particularly valuable for 
ongoing maintenance and monitoring of infrastructure without causing any damage, such as pots, cracks, 
and delamination in materials like asphalt, metal, and concrete (Garrido et al., 2018; Lu et al., 2017). It is 
effective under various conditions, although it is crucial to account for weather influences, such as wind, 
humidity, and ambient temperature, to ensure accurate readings. Figure 2.5 provides examples of infrared 
images of pavement, demonstrating how thermal contrasts can highlight underlying issues. These images 
showcase the practical application of IRT in maintaining and improving transportation assets.  

 
 Figure 2.5 IR image of Pavement 1

 
1 https://www.flir.com/discover/rd-science/mobile-infrared-scanning--a-high-tech-accurate-alternative-to-traditional-
bridge-inspection-methods/ 
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Despite its advantages, IRT faces challenges with the typically low spatial resolution of thermal images 
for most infrastructure, which can impact the accuracy of inspection results. Also, unlike GPR, IRT is 
suitable for horizontal data collection and measurement but cannot measure vertical aspects such as the 
thickness and depth of subsurface layers (Schnebele et al., 2015). This limitation restricts its ability to 
provide a complete assessment of certain types of infrastructure. Another consideration is the cost 
associated with IRT. Accurate measurement often requires high-end professional IR cameras, which can 
be expensive (Garrido et al., 2018).  

2.1.4 Close-Range Photogrammetry (CRP) 

CRP is suitable for sensing physical objects within a distance of less than 330 feet (100 meters) from the 
camera (Jiang et al., 2008). This technique primarily involves measuring and analyzing two-dimensional 
photographs collected by cameras. CRP can also produce three-dimensional models reconstructed from 
2D images taken from various angles. These 3D models are valuable for assessing the condition of 
objects (Farhadmanesh et al., 2021). 

CRP has a wide range of applications, broader than many other sensing technologies. For instance, 
cameras mounted on vehicles (as illustrated in Figure 2.6) can detect issues with transportation assets 
such as pavement, guardrails, and road markings (Farhadmanesh et al., 2021; Liq et al., 2012). The image 
data collected through CRP can be enhanced with other techniques, such as deep learning and image 
processing, to expand its applications further. For example, traffic signs can be automatically detected 
using color, geometric edge, and corner analysis (Ruta et al., 2010). 

 

 
Figure 2.6 Mobile Photogrammetry Setup and the View 

(Farhadmanesh et al., 2021) 

CRP offers a cost-effective and straightforward method for data collection and analysis, utilizing mobile 
phones or cameras. This ease of use allows for frequent data updates without incurring significant costs 
(Ahmed et al., 2011; Hanson et al., 2014). Despite these advantages, CRP has several limitations. Its 
precision and accuracy may be lower compared with other sensing technologies (Ragnoli et al., 2018). 
Additionally, various factors such as vehicle speed, camera quality, and lighting conditions can impact the 
final resolution of the collected images (Farhadmanesh et al., 2021; Gargoum et al., 2017). Nevertheless, 
the ability to quickly gather and update data makes it a valuable tool in many contexts, particularly when 
combined with advanced image processing techniques to enhance the quality and utility of the collected 
data. 
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2.1.5 Brief Summary 

Table 2.1 presents a comparison of these sensing techniques. Overall, GPR and IRT have limited 
application areas. Secondly, although LiDAR, GPR, and IRT offer relatively high accuracy, they 
require expensive professional instruments and expert knowledge for data collection and 
interpretation. 

Table 2.1 Comparison of Different Sensing Techniques 

Technique Accuracy Data analysis knowledge Application range Cost 
GPR High Complex Limited High 

LiDAR High Complex  Wide High 
IRT Medium Complex  Limited High 
CRP Relatively low Medium Wide Low 

In contrast, CRP stands out as a low-cost method for data collection that can be easily achieved 
using mobile phones or basic cameras. This makes CRP a highly accessible and practical option. 
Despite its lower precision and accuracy compared with some other technologies, CRP’s 
affordability and ease of use allow for frequent data updates, making it a reliable approach for 
assessing the conditions of various types of transportation assets. Thus, CRP has demonstrated 
significant potential as an affordable and effective method for infrastructure monitoring. 

2.2 Transportation Asset Maintenance AI Models 

Artificial intelligence (AI) models, particularly those utilizing computer vision and deep learning, excel in 
automatic object detection and image classification. Currently, AI models have already been integrated 
into transportation asset monitoring and maintenance practices, significantly enhancing the efficiency and 
accuracy of these processes. By automating the detection of issues and analyzing large volumes of image 
data, AI models contribute to more effective and timely maintenance of transportation infrastructure. 

2.2.1 Artificial Intelligence Models 

Computer vision is an interdisciplinary field focused on understanding the physical world by extracting 
and analyzing valuable information from images or videos (Huang et al., 2021). Image analysis and object 
detection through computer vision resemble human visual inspection because the information captured by 
images or videos is analogous to that obtained by human observers (Spencer et al., 2019). Computer 
vision processes range from low-level to high-level tasks, including image acquisition, segmentation, 
feature extraction, object recognition, and structural analysis (Koch et al., 2015). 

Deep learning, a subset of AI, has a remarkable capability to interpret images, sounds, and text by 
mimicking the human brain’s interpretation mechanisms. Deep learning frameworks consist of multiple 
layers of neuron nodes, where a training dataset is used to determine the weights of the neural network, 
ultimately forming the AI model (Lu, 2019). Numerous deep learning frameworks are available, such as 
You Only Look Once (YOLO) (Redmon et al., 2016), convolutional neural networks (CNN), and region-
based CNN (RCNN) (Krizhevsky et al., 2017). Unlike other deep learning methods that first propose 
regions of interest before the convolution operation, YOLO performs detection and classification 
simultaneously (Redmon et al., 2016). This approach enables YOLO to run faster than other algorithms 
(e.g., faster RCNN) while achieving higher mean average precision (Redmon et al., 2016). Consequently, 
YOLO is recognized for its high accuracy and speed in object detection among deep learning models. 
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In recent years, the high accuracy and speed of deep learning have driven significant advancements in 
various computer vision problems, including object detection and image segmentation (Voulodimos et al., 
2018). Compared with traditional computer vision algorithms, deep learning offers several advantages. 
Traditional algorithms rely on specific programming paradigms to extract features, which often involves 
extensive trial and error to select the appropriate features (O’Mahony et al., 2020). In contrast, deep 
learning employs a training framework with a set of inputs and known outputs, reducing the tedious 
process of feature extraction and signal processing (O’Mahony et al., 2020). Moreover, deep learning 
often outperforms traditional computer vision methods, especially in big data analysis, such as video data 
processing and analysis (Huang et al., 2021). 

2.2.2 Applications of AI Models in Transportation Assets Maintenance 

AI algorithms have been increasingly applied to transportation asset maintenance, with pavement 
condition assessment being a prominent area of research. The primary deep learning models used in this 
field include CNN (Gopalakrishnan et al., 2017), faster RCNN (Majidifard et al., 2020), and YOLO 
(Mandal et al., 2020). Publicly available datasets related to pavement distress, collected from 
smartphones, cameras, and Google Street View images, have supported these advancements (Majidifard 
et al., 2020; Mandal et al., 2020). These AI models, combined with diverse data sources, enable accurate 
automatic identification of various types of pavement distresses, such as transverse cracks, longitudinal 
cracks, block cracks, potholes, and alligator cracks (Du et al., 2020; Ghosh and Smadi, 2021; Majidifard 
et al., 2020). Additionally, some studies have focused on specific pavement types, including asphalt 
pavement (Wang et al., 2017; Wen et al., 2022) and Portland cement concrete (Gopalakrishnan et al., 
2017). Exceptional cases have also been explored, such as object detection in challenging photographic 
conditions like low illumination or shadows (Tepljakov et al., 2019). 

Beyond pavement distress, there is significant research on automatic pavement marking condition 
assessment. Zhang & Ge (2012) employed traditional image processing techniques, such as camera 
calibration, Hough transformation, and feature recognition, to assess pavement markings. Xu et al. (2021) 
used image pre-processing, feature extraction, and segmentation to detect and evaluate pavement line 
markings. However, traditional image processing methods often struggle with robustness due to their 
reliance on precise feature extraction, which can be hindered by noise from complex real-world scenarios 
such as varying light conditions and shadows (Li & Zhao, 2019).  

In the fields of deep learning applications for pavement markings, Kawano et al. (2017) used YOLO to 
detect faded pavement markings, although the accuracy was limited to less than 50% due to issues with 
annotation precision. Kang et al. (2020) developed a framework using YOLOv3 to assess pavement 
marking visibility, which also incorporated additional image processing techniques such as edge 
extraction, mask construction, and gray transformation. Vokhidov et al. (2016) applied CNN to detect 
damaged pavement markings, focusing specifically on arrow-based markings. Wei et al. (2021) combined 
Faster-RCNN with U-Net to evaluate the damage ratio of white pavement markings, though their method 
did not account for other types of pavement markings. 

Another significant application of AI algorithms in transportation asset management is traffic sign 
identification. For example, Hoang et al. (2018) combined various computer vision techniques, such as 
image augmentation and region processing, with CNN to create an AI model for traffic sign recognition. 
Similarly, Tabernik & Skočaj (2020) developed an automatic traffic sign inventory management system 
using Mask R-CNN, which handled 200 categories of traffic signs. Campbell et al. (2019) used open-
source images, like those from Google Street View, to build a training dataset and develop a deep learning 
model specifically for identifying “stop and give way” signs. Additionally, research has addressed the 
robustness of traffic sign detection in challenging conditions, such as snowy weather or low illumination 
(Chehri et al., 2021; Khan et al., 2018). 
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In contrast to the extensive research on pavement issues, fewer studies have focused on recognizing litter 
and trash on roads. Liu et al. (2018) utilized YOLOv2 to detect garbage on pavements, but their study 
considered only one type of garbage. Similarly, the AI model developed by Sayyad et al. (2020) was 
limited to large-sized garbage and did not classify different types of trash. Zhang et al. (2019) applied 
Faster R-CNN to identify and count different categories of litter, including inorganic, organic, trash, and 
tree leaves. However, their dataset was exclusively collected from street roads, which may restrict its 
effectiveness for litter detection on highways. 

Research on detecting steel guardrails and concrete barriers is even more sparse. Hou et al. (2022) 
proposed an automatic guardrail detection model that uses 3D local feature extraction based on mobile 
LiDAR data. In terms of RGB images, Liu et al. (2020) developed a standard urban image database that 
includes eight categories of urban images, one of which is damaged traffic guardrails. Jin et al. (2021) 
combined feature extraction with Mask R-CNN to detect steel guardrails on highways but did not include 
concrete barriers in their model. 

2.2.3 Brief Summary 

Deep learning and computer vision have demonstrated exceptional performance in automatic object 
detection and image classification. These technologies have been widely applied across various fields, 
with transportation asset monitoring and inspection being prominent examples. Pavement condition 
assessment has been extensively researched, showcasing the robust capabilities of AI models in this area. 
Traffic sign identification is another well-studied application, highlighting the potential of AI for 
detecting and managing transportation infrastructure. 

However, there is comparatively less research focused on other aspects of transportation asset 
management, such as identifying pavement marking issues, detecting steel guardrails and concrete 
barriers, and recognizing litter and trash on roads. Expanding research into these areas could further 
enhance the utility of AI in comprehensive transportation asset detection and maintenance.  

2.3 Commercial Practices of Transportation Assets Data Collection and 
Management 

Leveraging these data collection techniques and AI models, companies and organizations have developed 
commercial platforms to facilitate transportation asset management practices. 

2.3.1 Pillar 

Pillar2 is an infrastructure asset management firm that has developed an AI-based system to manage 
transportation assets. This system includes data collection to form an inventory database, assessment of 
asset conditions, development of maintenance plans, and execution assistance. In this system, mobile 
LiDAR and imagery scanning are used to collect transportation asset data. AI algorithms are then 
developed to process the collected data and automatically extract transportation assets (e.g., traffic signs, 
guardrails, and striping). With imagery and point cloud analysis, an asset inventory is created, including 
evaluated conditions. Figure 2.7 shows an example of the scanning and automatic extraction of steel 
guardrails. By employing these advanced techniques, Pillar enables comprehensive and efficient 
management of transportation infrastructure, ensuring timely maintenance and accurate condition 
assessments. 

 
2 https://www.pillaroma.com/artificial-intelligence-ai-in-transportation-asset-management/ 

https://www.pillaroma.com/artificial-intelligence-ai-in-transportation-asset-management/
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Figure 2.7 An Example of Guardrail Scan And Automatic Extraction by Pillar 

2.3.2 Esri 

Esri3 has developed a deep learning model to evaluate indicators of road conditions, such as road 
roughness and the level of crack damage, by leveraging road traffic density and road condition data. Esri’s 
platform allows users to organize road assets comprehensively, understand their location and condition, 
and integrate with leading asset management solutions for road maintenance. Additionally, Esri provides 
mobile solutions to assist with data collection and asset inspection on highways. 

The Florida Department of Transportation (FDOT) has adopted this system, known as FDOT’s public-
facing eMaintenance Web App (see Figure 2.8). This application is open to the public and provides 
inspection results for crash cushions and guardrails across Florida. By utilizing Esri’s system, FDOT 
enhances its ability to monitor and maintain transportation infrastructure effectively. 

Figure 2.8 Interface of FDOT eMaintenance Web App 

 
3 https://www.esri.com/en-us/industries/roads-highways/business-areas/maintenance

https://www.esri.com/en-us/industries/roads-highways/business-areas/maintenance
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2.3.3 Deep Systems (Russia) 

Deep Systems4 is an automatic road defect detection software developed by one of the leading Russian 
research groups, utilizing computer vision and deep learning. The algorithm operates in real-time to 
quickly detect defects such as cracks, holes, and patches from recorded video. This system also offers a 
web dashboard for monitoring and controlling GPU clusters, including training models, running defect 
detection, and viewing results. The dashboard interface is shown in Figure 2.9. Additionally, Deep 
Systems provides robust interoperability, allowing operators to create, modify, and populate training 
samples according to their specific requirements. By leveraging this advanced technology, Deep Systems 
enhances the efficiency and accuracy of road defect detection, providing a comprehensive tool for 
infrastructure maintenance and monitoring. 

 
Figure 2.9 Web Dashboard Page of Deep Systems 

2.3.4 TRIK 

TRIK5 is an innovative enterprise software solution designed to optimize the use of drone photography 
for structural inspections. It seamlessly transforms photos taken by drones into interactive 3D models, 
which can be easily measured and annotated. These 3D models not only facilitate detailed structural 
analysis but also serve as comprehensive databases, supporting photo searches, detecting structural 
changes, and maintaining project records. Additionally, TRIK’s capabilities extend to identifying 
pavement issues, making it a versatile tool for a wide range of inspection and maintenance needs. 

2.3.5 Pavemetrics 

Pavemetrics6 has developed the Laser Crack Measurement System (LCMS-2), a cutting-edge single-pass 
3D sensor for pavement inspection. The LCMS-2 can automatically geotag, measure, detect, and quantify 
critical functional parameters of pavement in a single pass. These parameters include cracking, rutting, 
texture, potholes, bleeding, shoving, raveling, and roughness, among others. 

 
4 https://deepsystems.ai/solutions/road-defects-detection 
5 https://gettrik.com/ 
6 https://www.pavemetrics.com/applications/road-inspection/lcms2-en/ 

https://deepsystems.ai/solutions/road-defects-detection
https://gettrik.com/
https://www.pavemetrics.com/applications/road-inspection/lcms2-en/
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2.3.6 Brief Summary 

TRIK and 2.3.5 Pavemetrics are commercially available platforms to collect and manage data, which can 
be further processed for pavement condition assessment. Pillar, Esri, and Deep Systems are AI-based 
platforms to help operators identify transportation assets and assess their condition based on deep learning 
technologies. Increasing combinations of computer vision and deep learning technologies have been applied 
in transportation asset management.  
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3. METHODOLOGY 

The comprehensive workflow of AI model development is depicted in Figure 3.1. In general, AI 
algorithm development follows an iterative process in this project. Initially, a mobile phone was mounted 
on vehicle’s windshield to capture video data. These videos were then converted into images and 
annotated for AI model training and testing. The labeled images were input into the YOLO framework for 
model training. Subsequent model tests used separate video samples to identify any remaining object 
detection issues through manual verification. Based on these findings, new images related to detection 
errors were added to the training dataset to initiate a new round of iterative training. This cycle was 
repeated to drive iterative model improvement. 

 

 
Figure 3.1 Flowchart of Model Development and Improvement 

3.1 Data Collection and Processing 

To collect transportation asset data for training AI models, a mobile phone (iPhone 12 Pro with a 12-
megapixel triple-lens camera at the back) was mounted on the passenger side of a vehicle’s front 
windshield. This placement allows the phone to capture transportation assets from a front-facing 
perspective. The setup of the video collection on the vehicle is depicted in Figure 3.2. 

The collected videos were recorded at 30 frames per second (fps). Approximately 31 hours of videos 
(estimated to contain around 3.3 million images) have been collected on highways and local streets in 
Utah. These videos encompass all types of transportation assets targeted in the project: pavement 
markings, traffic signs, steel guardrails, concrete barriers, and litter and trash. Certain special scenarios, 
such as strong-glare and low-illumination days, are also included in the data collection.  

In data processing, each image frame in the recorded videos was extracted sequentially. Only images 
clearly capturing targeted objects were extracted and incorporated into our training and test dataset. 
Moreover, to streamline the dataset and mitigate redundancy, a maximum of three images per object were 
chosen for training purposes, thereby optimizing the efficiency of the dataset while maintaining the 
requisite diversity needed for robust model training. 
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Figure 3.2 Setup of Video Collection 

Besides using self-collected images, this project has explored other open-source datasets, e.g., UDOT 
Roadview Explorer dataset and Google Street View, to train AI models. Through rigorous analysis, it was 
discerned that the self-collected data yielded the most optimal performance due to the direct and 
unobstructed views of transportation assets captured from the front windshield. Therefore, in this project, 
only images processed from self-collected videos were used to develop AI models. 

3.2 Data Annotations 

We used LabelImg to label objects with bounding boxes for the development of our training and test 
datasets. LabelImg7, a free and open-source graphical annotation tool, allows us to label images 
accurately. We labeled our dataset separately for different tasks, corresponding to different targeted 
transportation assets, to identify or assess their conditions.  

3.2.1 Pavement Marking Annotations 

In this project, we differentiated pavement markings into white and yellow classes and assessed their 
conditions accordingly. Following ASTM (2020) and Kuang et al. (2022), markings with over 50% of 
their areas faded or missing were labeled as faded (excluding fully faded). Consequently, faded markings 
were differentiated into two categories: “y_faded” (yellow faded markings) and “w_faded” (white faded 
markings). The “y_faded” includes faded double and single curb or lane markings in yellow, while 
“w_faded” includes faded longitudinal lane markings, horizontal markings (e.g., crosswalks, stop lines), 
arrow markings, and delineators in white. 

3.2.2 Litter & Trash Annotations 

This project classified trash and litter on the pavement into four types: “leaves” (vegetation and leaves on 
the roadside), “dirt” (dirt on the roadside), “w_litter” (litter in white or light colors, such as plastic and 
foam), and “b_litter” (litter in black or dark colors, such as used tires, rubber, and branches). 

  

 
7 https://github.com/heartexlabs/labelImg 

https://github.com/heartexlabs/labelImg
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3.2.3 Traffic Sign Annotations 

According to the Manual on Uniform Traffic Control Devices (FHWA, 2009), traffic signs are classified 
into four types: (1) “regulatory,” which includes stop signs, yield signs, and “Do not enter” signs (mostly 
in red or white); (2) “speed,” encompassing speed limit and school zone signs (mostly in white); (3) 
“warning,” covering warning signs and object markers (mostly in yellow); and (4) “guide,” consisting of 
destination guide signs and traffic movement signs (mostly in green). 

3.2.4 Guardrail and Barrier Annotations 

This project also considers guardrails and barriers. There are two classes presented: “concrete,” which 
includes cast-in-place concrete barriers and New Jersey shape barriers, and “steel beam,” encompassing 
w-beams with steel blocks and w-beam guardrails. 

3.3 You Only Look Once (YOLO) 

YOLO is a pre-trained object detection model based on the COCO dataset. It simultaneously proposes 
regions of interest and makes detections, making it faster than most state-of-the-art algorithms (Redmon 
et al., 2016). YOLO predicts the bounding boxes of target objects and the probabilities of their associated 
classes in a single scan of images. Only predictions with more than the threshold of confidence (30% in 
this study) are considered effective and are labeled with bounding boxes. Additionally, YOLO can crop 
the labeled objects for further processing after detection. 

In this project, we utilize YOLOv5 as the base AI framework to develop AI models for each research task. 
The architecture of YOLOv5, illustrated in Figure 3.3 (S. Xu et al., 2021), consists of three main parts: 
the backbone, neck, and output. 

• Backbone: The backbone network employs a cross-stage partial (CSP) network and spatial 
pyramid pooling (SPP) to extract feature maps from the input image at different scales through 
multiple convolution and pooling layers (Li et al., 2022). This method enhances both inference 
speed and accuracy by efficiently processing and consolidating features at various resolutions. 

• Neck: The neck network uses a path aggregation network (PANet) to ensure that useful 
information at each feature level propagates directly to subsequent subnetworks. PANet improves 
the propagation of low-level features through an enhanced bottom-up path and uses adaptive 
feature pooling to maximize the utilization of accurate location signals in lower layers (S. Xu et 
al., 2021). This results in better feature fusion and helps the model maintain high performance, 
even with complex input data. 

• Head: The head is the output of YOLO, generating three different sizes of feature maps (18 x 18, 
36 x 36, and 72 x 72) to detect objects at multiple scales (Redmon et al., 2016; S. Xu et al., 2021). 
This multi-scale detection capability allows YOLOv5 to accurately identify objects of varying 
sizes within the same image, enhancing its versatility and robustness. 

With this developed framework, YOLOv5 achieves high detection speed and accuracy. Its efficient 
architecture and advanced feature extraction techniques make it well-suited for real-time object detection 
tasks, ensuring reliable performance in a wide range of applications. By building on YOLOv5, our project 
benefits from these advancements, enabling precise and rapid detection of target objects, e.g., traffic 
signs, litter, and pavement marking issues.  
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Figure 3.3 The Architecture of YOLOv5 

(R. Xu et al., 2021) 

3.4 Accuracy Metrics 

This project applies YOLO to train AI models for transportation asset detection. The metrics used to 
evaluate performance are defined as follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

𝑇𝑇𝑇𝑇
𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =  

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝐹𝐹1 =
2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟

 

Here, TP (true positive) describes a scenario where a prediction box correctly captures a positive object. A 
FP (false positive) occurs when a prediction box captures an incorrect object, while a FN (false negative) 
means that a positive object is not detected by any prediction box. Therefore, precision and recall evaluate 
the performance of the model from different perspectives:  

• Precision reflects the reliability of the model in classifying objects as positive. 
• Recall measures the model’s ability to detect positive objects (i.e., true positives). 
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To ensure a balance between precision and recall, the F1-score is introduced, which weights them equally 
to avoid outperforming in one metric while underperforming in the other (Arya et al., 2020). In the 
reported metrics, our objective is to identify objects of interest accurately. These objects are considered as 
true positives as long as the developed AI algorithms detect them during the video detection process once. 
This approach ensures that our model reliably captures and identifies the relevant transportation assets, 
thereby optimizing the detection performance across various metrics. 
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4. RESULTS 

4.1 Model Training Environment and Parameter Setting 

The training and testing in AI model development were performed using a Windows 10 desktop. The 
hardware information, configurations of the AI development environment, and training parameters are 
detailed in Table 4.1 and Table 4.2. 

Table 4.1 Training Environment Configuration 
Environment Configuration 
CPU 8-Core 
GPU NVIDIA GeForce RTX 3070 
Memory 64GB 
Operating System Windows 10 
Language Python 3.10.4 
Deep Learning Framework PyTorch 1.10.2 
CUDA Version 11.3 

Table 4.2 Training Parameter Settings 
Parameter Setting Parameter Setting 
Size of Input Images 640 x 640  Learning Rate 0.01 
Initial weight Yolov5s Epochs 1000 
Optimizer Adam Batch size 16 

4.2 AI Model Development to Identify Pavement Marking Issues 

A total of 1,479 images were incorporated into our training dataset for pavement marking model 
development. Out of these, 1,088 images were used for training, while 391 images were used for 
validation. 

4.2.1 Model Training and Test Performance 

The training process stopped at 315 epochs as no further improvement was observed in the last 100 
epochs. The best model training result was achieved at epoch 215. Figure 4.1 illustrates the reported 
accuracy metrics during the algorithm training process, showing that the AI model finally reached 
convergence. The model achieved a precision of approximately 87%, a recall rate of 90%, and an F1 
score of 89% (Table 4.3). 



 

 

  

21 
 

Figure 4.1 Accuracy Metrics of Pavement Marking Issues During Training 

Table 4.3 Training Results of Pavement Marking Issues 
Class Precision Recall F1 score 

all 0.87 0.9 0.89 
w_faded 0.88 0.91 0.89 
y_faded 0.86 0.89 0.87 

4.2.2 Examples of Pavement Marking Issues Detection 

In the iterative improvement process, we performed visual inspections on approximately seven hours of 
videos to validate the model’s performance. To correct wrong identifications, we incorporated more 
training images. The addressed detection issues included false detection of normal markings as faded 
markings, incorrect classification of pavement issues as faded markings, and misidentification of special 
markings as faded markings. Examples of pavement marking detection by the developed AI model are 
shown in Figure 4.2. 
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(a) Faded white lane and arrow markings (b) Faded white lane marking 

(c) Faded white dot lane marking (d) Faded white crosswalk marking 

(e) Faded white stop lane markings (f) Faded white delineator markings 

(g) Faded double yellow lane marking (h) Faded single yellow lane marking 
Figure 4.2 Examples of Detection Results of Pavement Marking Issues 
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4.3 AI Model Development to Identify Litter & Trash  

A total of 1,916 images were used to develop the AI model for trash and litter detection. Of these, 1,371 
images were used for training, and 545 images were used for validation. 

4.3.1 Model Training and Performance 

The AI model for litter and trash identification converged after 457 epochs as no significant improvement 
was observed in the last 100 epochs. The optimal training model was achieved at epoch 357. The training 
process and accuracy metrics are shown in Figure 4.3 and Table 4.4. The developed AI model achieved a 
precision of 86%, a recall rate of 92%, and an F1 score of 89%. 

 
Figure 4.3 Accuracy Metrics of Litter & Trash Identification During Training 

Table 4.4 Training Results of Trash & Litter 
Class Precision Recall F1 score 

all 0.86 0.92 0.89 
leaves 0.88 0.93 0.90 

dirt 0.91 0.91 0.91 
w_litter 0.79 0.93 0.85 
b_litter 0.88 0.92 0.90 

4.3.2 Examples of Litter & Trash Identification 

During the iterative AI model development process, around four hours of videos were tested. The 
addressed litter and trash detection issues included the misclassification of outfall points on highways as 
“b_litter” and the incorrect detection of white markings or pavement as “w_litter” or “b_litter.” Examples 
of trash and litter identification by the developed AI algorithm are demonstrated in Figure 4.4. 
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(a) Dirt on the highway (b) Black litter on the highway 

(c) Dirt and litter on the highway (d) White litter and dirt on the highway 

(e) Leaves on the street road (f) Leaves on the street road 

(g) Black and white litter on the street road  (h) Dirt on the street road  
Figure 4.4 Examples of Detection Results of Trash & Litter 



 

25 
 

4.4 AI Model Development to Identify Traffic Signs  

A total of 1,456 images were used to train the AI model for traffic sign detection. Of these, 1,026 images 
were used for training, and 430 images were used for validation. 

4.4.1 Model Training and Performance 

The training process for the AI model for traffic sign detection stopped at 315 epochs as no improvement 
was observed in the last 100 epochs. The best results were observed at epoch 215. Training results are 
shown in Table 4.5 and Figure 4.5. The AI model reached convergence within the training process, 
achieving an overall precision of 88%, a recall rate of 90%, and an F1 score of 89%. 

Table 4.5 Training Results of Traffic Signs 
Class Precision Recall F1 score 

all 0.88 0.90 0.89 
regulatory 0.94 0.81 0.87 

speed 0.84 0.93 0.88 
warning 0.83 0.93 0.88 

guide 0.89 0.94 0.91 

 
Figure 4.5 Accuracy Metrics of Traffic Signs During Training 

4.4.2 Examples of Traffic Signs Detection 

The model developed for traffic sign detection was tested on two-hour videos during the improvement 
process. The addressed detection issues in the iterative improvement process included the 
misclassification of advertisement boards on highways as traffic signs and the failure to detect signs 
obscured by trees. Examples of using AI to identify traffic signs are shown in Figure 4.6. 
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(a) Traffic movement guide and speed warning (b) Traffic movement guide 

(c) Exit guide and warning maker (d) Warning sign 

(e) Speed limit (f) Street guide  

(g) Stop sign and street guide  (h) Do not enter and street guide 
Figure 4.6 Examples of Detection Results of Traffic Signs 
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4.5 AI Prototype Development to Identify Guardrails and Barrier 

A prototype AI algorithm for steel guardrail and concrete barrier identification was developed using 241 
images, with 153 images used for training and 56 images for validation. The training process for this 
prototype AI algorithm stopped at 265 epochs as no further improvement was observed. The best results 
were achieved at epoch 165. 

The training process is illustrated in Figure 4.7. The AI model converged during the training process, 
achieving approximately 80% accuracy in detecting concrete barriers and steel guardrails. The training 
results indicate significant potential to develop a high-performance model for identifying steel guardrails 
and concrete barriers.  

 

  

Figure 4.7 Accuracy Metrics of Guardrails and Barriers During Training 

Detection examples for these two classes are shown in Figure 4.8. The developed AI prototype 
demonstrates its ability to identify both steel beam guardrails and concrete barriers. However, additional 
image data are required to enhance this prototype further. 
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(a) W-beam steel guardrail (b) Concrete barrier and steel guardrail 

(c) Concrete barrier (d) Concrete barrier and steel guardrail 
Figure 4.8 Examples of Detection Results of Guardrails 
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5. CONCLUSIONS 

5.1 Summary 

Close-range photogrammetry, including data collection via mobile phones, offers a lightweight and cost-
effective solution for timely transportation asset information collection. Concurrently, AI models such as 
computer vision and deep learning excel in automatic object detection and image classification, 
demonstrating significant potential in transportation asset monitoring and maintenance. 

This project, therefore, focuses on developing reliable and affordable AI algorithms capable of analyzing 
videos collected by mobile phones to facilitate automatic information collection and inspection of 
transportation assets, including pavement markings, traffic signs, trash and litter, steel guardrails, and 
concrete barriers. 

We collected approximately 31 hours of videos, covering highways and local roads in Utah using a 
smartphone mounted on a vehicle’s windshield. These videos were processed into labeled images for 
training and validation. The developed AI package is designed for automatic information collection of all 
the targeted types of transportation assets mentioned above. The results indicate that the AI models are 
capable of automatically detecting relevant transportation assets with high accuracy (over 85%). 

5.2 Findings 

In this study, three AI models were developed for the automatic detection of pavement marking issues, 
traffic signs, and litter and trash, along with a prototype model for identifying steel guardrails and 
concrete barriers. These models were trained and tested using images extracted from videos recorded on a 
mobile phone mounted on a vehicle’s windshield. Specifically: 

(1) For pavement marking issue detection, 1,496 images were used to train the AI model. The pavement 
marking issues were classified into two categories based on color: faded yellow markings (“y_faded”) and 
faded white markings (“w_faded”). The performance metrics for this model are a precision of 87%, a 
recall of 90%, and an F1 score of 89%. 

(2) To develop the AI model for trash and litter identification, 1,916 images were utilized. This model 
included four major classes: leaves, dirt, white litter (“w_litter”), and black litter (“b_litter”). The model 
achieved a precision of 86%, a recall of 92%, and an F1 score of 89%. 

(3) The AI model for traffic sign identification was trained with 1,456 images. The traffic signs were 
classified into four categories: regulatory, speed, warning, and guide signs. The performance metrics for 
this model are 88% precision, 90% recall, and an F1 score of 89%. 

(4) A prototype AI algorithm for steel guardrail and concrete barrier identification was developed using 
241 images. This prototype performed well in identifying both steel guardrails and concrete barriers in 
tested videos and shows great potential for achieving high-accuracy detection with further development. 

These AI models were developed to facilitate the automatic information collection and assessment of 
transportation assets, leveraging videos processed into labeled images for training and validation. The 
results show that the developed AI models are capable of accurately and efficiently collecting relevant 
transportation asset information. 
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5.3 Limitations and Future Work 

Despite the decent performance of the current AI models, limitations still exist. First, the training dataset 
is limited, leading to false detections in certain scenarios. Second, the performance of the developed AI 
models has not been tested in special scenarios, such as rainy days or daytime, with strong or low 
illuminance. These conditions present more challenging situations for accurate transportation asset 
inspection. Therefore, the performance of the developed algorithms needs further evaluation under these 
scenarios. 

Considering these limitations, further improving the detection accuracy and robustness through large-
scale AI algorithm validation is a promising direction. Incorporating more training and test images under 
special circumstances is essential for evaluating algorithm performance across all types of transportation 
assets. 
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