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ABSTRACT 

The maintenance and upgrade of infrastructure and buildings are critical for ensuring their performance, 
safety, and minimizing costs. However, inadequate planning and budget allocation, as well as resource 
constraints, often result in delayed maintenance, leading to costly interventions. To address these 
challenges, this study presents two novel models for optimizing the selection of upgrade and maintenance 
interventions to minimize the life-cycle cost while complying with annual budgets and performance 
requirements. The first model focuses on bridges and utilizes machine learning (ML) techniques to 
predict the condition of concrete bridge elements based on the National Bridge Inventory (NBI) and 
National Bridge Elements (NBE) databases. The model uses binary linear programming to identify the 
optimal selection of maintenance interventions and their timing to maximize bridge performance. The 
model’s primary contributions are the development of a novel system that integrates ML techniques and 
linear programming, predicting bridge element conditions based on NBE’s health index metric, and 
generating long-term maintenance plans to maximize the performance of bridges within available 
budgets. The second model focuses on buildings and proposes a computationally efficient model for 
identifying optimal upgrade and maintenance interventions to minimize the equivalent annual operation 
and maintenance cost (EAOMC) while complying with specified annual budgets and building operational 
performance. The model integrates reactive, preventive, and predictive maintenance strategies based on 
component types and incorporates simulation-based approach to evaluate energy and water consumption 
of buildings. The model’s primary contributions are the development of a new model for identifying 
optimal selection of building upgrade and maintenance interventions, integrating maintenance and 
upgrade interventions to maximize economic benefits, and reducing operational and maintenance costs. 
Both models are evaluated using case studies and demonstrating new capabilities in identifying optimal 
upgrade and maintenance interventions for various operational budgets while achieving significant 
reductions in EAOMC and maximizing the performance of infrastructure and buildings. These models 
can assist decision-makers, such as highway agencies, in allocating limited financial resources for 
maintenance more efficiently and cost-effectively. The proposed approach can lead to significant 
economic and environmental benefits by reducing the life-cycle cost of infrastructure and buildings while 
ensuring their performance, safety, and sustainability. 
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1. INTRODUCTION AND OBJECTIVES 

1.1 Introduction 

Effective planning for bridge maintenance is crucial to ensure their performance, safety, and life-cycle 
costs. Timely and cost-effective interventions can prevent deterioration, enhance bridge performance, and 
avoid costly repairs. Inadequate planning and resource constraints often lead to delays in bridge 
maintenance, presenting challenges for decision-makers, particularly highway agencies, in allocating 
limited funds efficiently. Traditional stochastic methods for assessing bridge conditions, such as state-
based and time-based approaches, have limitations. Data-driven methods, such as ML techniques, offer an 
opportunity to overcome these limitations and predict bridge element deterioration using historical 
condition data from databases like the National Bridge Inventory (NBI) and National Bridge Elements 
(NBE). Data-driven methods can provide more accurate predictions by analyzing large datasets and 
identifying patterns and relationships that may not be apparent to human experts. Additionally, these 
methods are flexible, adaptable to changing data, and eliminate subjective expert judgments. Leveraging 
historic condition data, data-driven approaches can be used to develop models capable of predicting 
bridge element deterioration and optimizing maintenance interventions while adhering to annual budgets. 
 
Similarly, operation and maintenance costs of buildings are recognized as the most significant phase in a 
building’s life cycle, surpassing the initial design and construction expenses. However, challenges such as 
design errors, lack of maintenance plans, and insufficient facility management knowledge often contribute 
to inflated building operational costs. Energy and water consumption further contribute to the high 
operation and maintenance costs of buildings. Despite regular maintenance practices, energy and water-
saving investments are often overlooked due to various obstacles, including capital limitations, 
uncertainty regarding expected savings and payback periods, and a lack of skilled workers. Nonetheless, 
technological advancements in building systems provide a valuable opportunity to reduce operational 
costs. For example, upgrading fixtures, equipment, and envelope components can result in substantial 
energy and water consumption savings. To address the complexity of building systems and the limited 
availability of operational budgets, there is a need for innovative models that can assist decision-makers 
in identifying optimal upgrade and maintenance interventions for existing buildings. 
 
This study aims to address the challenges faced in building operation and maintenance costs as well as 
bridge maintenance through innovative data-driven approaches. By integrating machine learning 
techniques and simulation-based evaluations, the proposed models offer decision-makers the ability to 
identify optimal upgrade and maintenance interventions for existing buildings and bridges. These models 
consider various factors such as energy and water efficiency, operational budgets, and performance 
requirements. The primary objectives are to minimize life-cycle costs, maximize performance, and 
enhance resource allocation efficiency for both buildings and bridges. The outcomes of this research will 
contribute to the body of knowledge by providing practical tools to support decision-making processes 
and promote sustainable and cost-effective maintenance practices for infrastructure and buildings. 
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1.2 Objectives  

The objective of this research work is to develop an innovation optimization model that can identify 
optimal selection of upgrade and maintenance interventions to minimize life-cycle cost or equivalent 
annual cost of buildings and bridges. The model will be designed to maximize economic benefits by 
identifying an optimal schedule of interventions with respect to available annual budgets and service life 
to reduce operational and maintenance costs. This model is expected to provide much needed support to 
asset management teams in state DOTs to identify an optimal schedule of upgrades and maintenance 
interventions.  
To this end, the sub-objectives of this research work are designed to: (1) identify upgrade and maintenance 
interventions for state DOT buildings and bridges; (2) achieve significant savings in the life-cycle cost of 
bridges and buildings by developing a new model that can identify optimal selection of upgrade and 
maintenance interventions; (3) document life-cycle cost savings of the model using case studies of a state 
DOT building and a bridge.  
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2. LITERATURE REVIEW 

The existing research in the field of bridge and building maintenance can be broadly categorized into five 
areas: (1) bridge condition rating systems and deterioration models, (2) bridge maintenance prioritization 
methods, (3) bridge maintenance optimization models, (4) building energy and water efficiency measures, 
and (5) building upgrade and maintenance models and tools. This literature review will provide a detailed 
analysis of each of these categories. 

2.1 Bridge Condition Rating Systems and Deterioration Models 

Evaluating the condition of bridge elements is a vital step in estimating their remaining service lives and 
planning and prioritizing maintenance interventions. To this end, the Federal Highway Administration 
(FHWA) maintains the National Bridge Inventory (NBI), which was compiled in 1968 to include 
information on the following: (1) bridge identification, such as ID and location; (2) bridge types and 
specifications, such as design and geometric data; (3) operational data, such as average daily traffic and 
inventory rating; and (4) condition rating of primary components, including deck, superstructure, and 
substructure (FHWA 2023). The condition ratings in NBI are based on periodic visual inspections and are 
used to plan maintenance interventions for the bridge inventory. The NBI categorizes the condition of 
primary bridge components using discrete values ranging from 1 to 9, representing failed condition to 
excellent condition, respectively (FHWA 1995). In 2014, the National Bridge Elements (NBE) database 
was introduced as a mandatory tool for bridge asset management to increase accuracy of evaluating 
severity and extent of bridge condition deficiencies at the element level. The NBE includes data on bridge 
elements, their quantity, and percentage of each element in terms of good, fair, poor, and severe condition 
states. The NBE database uses a health index (HI) as the condition rating for each bridge element. The HI 
ranges from 0 to 100 and is calculated based on the percentages of element quantity in good, fair, poor, 
and severe condition states. This allows the NBE to consider the condition of each bridge element in a 
more detailed and comprehensive manner (FHWA 2014). 
 
The aforementioned conditions are used to estimate the remaining service life of components, and to plan 
maintenance interventions to maintain the performance of bridges at acceptable levels to ensure their 
functionality. Several studies applied data-driven methods to predict the condition rating of primary 
bridge components based on NBI 9-class condition ratings (Alonso Medina et al. 2022; Bektas 2017; 
Chyad and Abudayyeh 2020; Fiorillo and Nassif 2019, 2020; Fraher et al. 2010; Hasan and Elwakil 2020; 
Liu and El-Gohary 2020; Lu et al. 2019; Miner and Alipour 2022; Nguyen and Dinh 2019).  For example, 
Ariza et al. (2020) compared the performance of Markov, semi-Markov, and hidden Markov models and 
artificial neural networks methods in predicting the deterioration of concrete bridge decks. They applied 
the aforementioned methods on the same dataset and used mean square error (MSE) and mean average 
error (MAE) metrics to objectively compare the performance of each model. The results of their study 
showed that the artificial neural network (ANN) outperformed other methods with MSE and MAE of 0.21 
and 0.32, respectively. Alogdianakis et al. (2021) presented an ANN model based on NBI to predict the 
deterioration of bridge conditions. In this study, the overall bridge conditions are classified in three 
groups, including good, fair, and poor. The overall bridge condition is classified as “good” if the 
minimum rating of primary components is at least 7, “fair” if the minimum rating of primary components 
is 5 or 6, and “poor” if the minimum rating is below 5. Moreover, this study applied a genetic algorithm 
to identify the best set of features for the ANN model to maximize its accuracy. Based on the case study 
performed on the overall accuracy of the Genetic Algorithm-Artificial Neural Network (GA-ANN) 
pattern recognition model was measured at 72.4%. Althaqafi and Chou (2022) developed several ANN 
classification models using the NBI dataset to identify the best ANN architecture for predicting the NBI 
9-class condition rating of bridge decks, superstructures, and substructures. The best architecture achieved 
the MAE and 𝑅𝑅2 score of 0.16 and 0.81 for deck, 0.17 and 0.81 for superstructure, and 0.21 and 0.76 for 
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substructure, respectively. In a similar study, Liu and El-Gohary (2022) used a recurrent neural network 
classification model to predict the year-ahead NBI 9-class condition rating of primary bridge components, 
including decks, superstructures, and substructures, in the state of Washington. The developed model in 
this study achieved an average precision metric and recall metric values of 89.9% and 85.8%, 
respectively. 
 
Despite the contribution of the aforementioned studies in predicting the deterioration of bridge condition, 
these studies primarily focused on the deterioration of major bridge components such as decks, 
superstructures, and substructures using NBI condition ratings; they did not examine the deterioration of 
specific elements at a granular level using metrics such as the NBE’s HI elements. Additionally, these 
studies often relied on subjective expert opinions for choosing deterioration predictor features rather than 
using objective methods. 

2.2 Bridge Maintenance Prioritization Methods 

A number of studies presented budgeting methods for bridge maintenance prioritization to support 
decision-makers in planning and prioritizing maintenance and renovation activities (Amini et al. 2016; 
Contreras-Nieto et al. 2019; Das and Nakano 2021; Echaveguren and Dechent 2019; Fitriani et al. 2019; 
Gokasar et al. 2022; Hadjidemetriou et al. 2022; Huang et al. 2004; Kim et al. 2020; Valenzuela et al. 
2010; Wakchaure and Jha 2011). For example, Zhang and Wang (2017) developed a bridge network 
model to prioritize maintenance interventions for a group of bridges while taking into account budget 
limitations. They introduced two performance indices: (1) static priority index (SPI), which assesses the 
performance of networks based on travel time between all possible origin-destination pairs within the 
network; and (2) dynamic priority index (DPI), which evaluates the performance of networks while 
considering the uncertainties affecting the performance of the transportation network. The case study’s 
findings indicated that the DPI is a more effective ranking system compared with the SPI. Similarly, 
Contreras-Nieto et al. (2019) proposed a multi-criteria decision making model (MCDM) for prioritizing 
bridge maintenance tasks and budget allocation. They utilized analytic hierarchy process (AHP) to rank 
the maintenance activities based on bridge experts’ perceptions of the relative importance of maintenance 
interventions on the deck, substructure, superstructure, and score in terms of bridge resiliency, riding 
comfort, safety, and serviceability. The results of the case study indicated that bridge decks are the most 
critical component when considering safety, serviceability, and comfort, and that the substructure is of 
highest importance when considering the resiliency criterion. Das et al. (2021) proposed a method for 
prioritizing bridge maintenance interventions using the Technique for Order of Preference by Similarity 
to Ideal Solution (TOPSIS). The approach was based on criteria such as bridge condition index, delay 
cost, and accessibility. The case study results indicated that the failure of higher priority bridges can result 
in higher social costs. Other research works considered maintenance and social costs as well as 
environmental impacts in order to prioritize bridge maintenance interventions. For example, Gokasar et 
al. (2022) developed a hybrid MCDM model to rank bridge maintenance projects based on various 
criteria such as cost effectiveness, physical condition, social impact for travelers, and CO2 emissions. To 
do this, they combined fuzzy weighted aggregated sum product assessment and TOPSIS to prioritize 
bridge maintenance projects. The case study results demonstrated that the environmental impacts of 
bridge maintenance projects can significantly influence the ranking of maintenance alternatives.  
 
Although the aforementioned studies have significant contributions in presenting models for maintenance 
prioritization, they tend to focus on short-term bridge maintenance and are not capable of generating long-
term maintenance plans that optimize the performance of bridges within available budgets. 
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2.3 Bridge Maintenance Optimization Models 

Several research studies focused on developing maintenance optimization models to identify optimal 
maintenance interventions for bridges to minimize life-cycle costs (Bukhsh et al. 2018; Jaafaru and 
Agbelie 2022; Liu and Frangopol 2005; Nili et al. 2020, 2021; Peng et al. 2022; Sabatino et al. 2015; 
Saydam and Frangopol 2015; Wang and Piao 2019; Xie et al. 2018). These studies showed that 
implementing preventive maintenance (PM) can decrease the need for major maintenance interventions, 
leading to reduced maintenance costs and environmental impacts. For example, Ghodoosi et al. (2018) 
introduced an optimization model to minimize the life-cycle cost of bridge structures. This model 
integrates various databases, including asset inventory, a list of maintenance actions, and a deterioration 
model based on reliability, as well as an intervention effect model. The optimization model utilizes 
genetic algorithms to determine the optimal intervention scenarios. The model was applied to a simply 
supported bridge superstructure in a case study, which demonstrated that implementing less costly minor 
repair actions resulted in 4.5 times greater cost savings compared with the conventional approach of only 
conducting major repairs. In a similar study, Abdelkader et al. (2021) proposed a multi-objective 
differential evolution optimization model that aims to minimize maintenance time, cost, and greenhouse 
gas emissions. To evaluate the effectiveness of different intervention plans, the authors used a discrete 
event simulation model to simulate the process of replacing a bridge deck and a neural network model to 
predict the time, cost, greenhouse gas emissions, and resource utilization of each plan. In a case study, the 
proposed model achieved up to 71.01%, 27.87%, and 39.29% reductions in time, cost, and greenhouse 
gas emissions, respectively, compared with traditional methods. Nili et al. (2021) developed a simulation-
based optimization model for identifying optimal maintenance interventions in bridge repair projects that 
aim to minimize agency and user costs while considering workspace constraints and predecessor 
relationships. The model used a discrete event simulation to determine the optimal sequence of repair 
activities for each intervention. In their case study, the proposed model resulted in an 11% reduction in 
user costs and a 4% reduction in crew costs compared with traditional methods. Xie et al. (2018) 
developed a multi-objective optimization model using a genetic algorithm to maximize safety and 
minimize the life-cycle cost and environmental impact of existing bridges. The model is designed to 
determine the optimal timing for performing preventive maintenance interventions. In their case study, 
the proposed model achieved up to 25% reduction in life cycle environmental impacts compared with 
conventional methods. 
 
Despite the contributions of previous research on identifying optimal maintenance interventions, the 
results of these studies are limited by solution quality (i.e., the optimality of the solutions provided) or 
computational efficiency (i.e., the computational time required to generate the solutions). Moreover, there 
are no reported studies that present data-driven models that are capable of identifying optimal selection of 
maintenance interventions and their timing to maximize the performance of bridges while complying with 
available annual budgets. 

2.4 Building Energy and Water Efficiency Measures 

Several research studies have analyzed the impact that cooling and heating system upgrades have on 
buildings’ energy consumption. These studies evaluated energy and cost savings of installing energy 
efficient HVAC (Heating, Ventilation, and Air Conditioning) systems in buildings. For example, a 
research study used field data from a high-rise residential case study building to create a calibrated energy 
model using EnergyPlus in order to examine the impact of compartmentalization and in-suite ventilation 
with heat recovery on overall space heating energy and greenhouse gas emissions. The case study showed 
that applying these measures leads to 78% reduction in total space heating energy and 83% reduction in 
associated greenhouse gas (GHG) emissions (Carlsson et al. 2019). Using Bayesian network technique, 
another research study presented an approach to select the most energy efficient HVAC system. In this 
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study, a database from the 2012 Commercial Building Energy Consumption Survey (CBECS) was used to 
identify the optimal selection of HVAC systems (Tian et al. 2019). Other research studies have analyzed 
and evaluated the impact of upgrading wall and roof insulation on buildings’ energy consumption in 
different regions and climates (Evin and Ucar 2019; Fantucci and Serra 2019; Huang et al. 2020; Jie et al. 
2018; Juanicó 2020; Qiu et al. 2018; Ran et al. 2017; Ran and Tang 2018). For example, a recent study 
presented an optimization model to determine the optimum economic wall insulation thickness in existing 
buildings with combined heat and power-based district heating systems. The study showed that the 
increase in insulation thickness can reduce the annual heat demand, annual energy losses, heat medium 
temperature, and energy quality coefficient of heat medium (Jie et al. 2019). A number of research studies 
analyzed and evaluated the impact of glazing and upgrading windows on buildings’ energy consumption 
(Fazel et al. 2016; Goia 2016; Gugliermetti and Bisegna 2007; Litti et al. 2020; Tällberg et al. 2019; Xue 
et al. 2019; Ye et al. 2014). For example, a research study evaluated the impact of replacing existing 
windows with more energy efficient ones or applying solar films on building energy usage. The study 
revealed that a combination of solar films and double glazed windows can reduce the annual HVAC 
energy consumption by up to 20% (Somasundaram et al. 2020). In addition, a number of research studies 
analyzed the impact of water heater systems on building energy consumption. For example, Kumar et al. 
studied the life-cycle cost and GHG emissions for five different types of water heating systems, including 
electric instantaneous, electric storage, natural gas instantaneous, natural gas storage, and heat pump. This 
study stated that five systems had major differences in the upfront cost, running cost, life-cycle cost, and 
GHG emissions. The study revealed that natural gas instant water heaters had the least upfront cost, the 
least life-cycle cost, and the second least GHG emissions after heat pumps (Kumar and Mathew 2018). 
Similarly, using life-cycle assessment and life-cycle cost analysis methods, another study suggested that 
natural gas should be used instead of electricity for water heating when both energy sources are practical 
options (Arpke and Hutzler 2005). Furthermore, analysis of lighting systems and their impact on building 
energy consumption is a focus of several studies. For example, Byun et al. presented an intelligent 
household LED lighting system to control an LED light according to the user’s state and the 
surroundings. This system autonomously adjusts the minimum light intensity value to enhance energy 
efficiency and user satisfaction, which results in a power consumption reduction of up to 21.9% (Byun et 
al. 2013).  
 
Water conservation measures are increasingly important due to climate change and a decrease in 
groundwater and surface water levels in the United States and many countries around the globe (AWWA 
2019). Therefore, many research studies have focused on implementation and evaluation of water 
efficiency measures in existing buildings. For example, Arpke and Hutzler used life-cycle assessment and 
life-cycle cost analysis techniques to analyze the operational life cycle of plumbing fixtures and water-
consuming appliances for an apartment, a college dormitory, a motel, and an office building for a 25-year 
period. The findings of this research revealed that the usage of higher-efficiency fixtures and appliances is 
environmentally and economically justifiable (Arpke and Hutzler 2005). Cahill et al. conducted a similar 
study to estimate the least-cost combination of long- and short-term conservation actions based on end-
water-use parameter probability distributions generated from Monte Carlo sampling. The results of this 
study suggested that faucet and toilet retrofits have the highest potential for water savings (Cahill et al. 
2013).  

2.5 Building Upgrade and Maintenance Models and Tools  

Several research studies assessed retrofit packages for large building stocks (Guardigli et al. 2018; Lim 
and Zhai 2017). For example, Zheng et al. proposed a bottom-up approach to analyze the relationship 
between building energy savings and the investments for different building types. The goal of this 
approach was to identify the energy-saving potential and to recommend effective energy efficiency 
measures. This paper studied the investments and energy savings for 100 buildings. This study’s results 
showed that there was a strong correlation between investment and energy savings in renewable energy, 
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lighting, and elevator systems retrofit. Moreover, there was a relatively weak correlation between 
investment and energy savings in air conditioning and envelope retrofit (Zheng et al. 2019a). In another 
study, Streicher et al. presented three economic assessment approaches for a national building stock to 
compare different deep energy retrofit packages. These three approaches assess the cost-effectiveness of 
large-scale retrofit packages from three different perspectives: (1) profit, which focuses on investment 
costs and the energy savings; (2) improvement, which implements the retrofits only at end of a lifetime of 
components; and (3) depreciation, which considers both environmental/energy and economic aspects. The 
results of the case study in this paper show 55% to 86% potential for a reduction in energy usage and 50% 
to 80% potential for a reduction in GHG emissions (Streicher et al. 2020). Although the aforementioned 
studies had significant contributions in identifying optimal selection of upgrade packages for large 
building stocks, they are not cable of the following: (1) providing building specific upgrade 
recommendations based on the specific building performance requirements, and (2) identifying upgrade 
packages based on owner specified constraints such as available upgrade budget. 
 
Several research studies evaluated the economic feasibility of building upgrade measures on a building-
level analysis (Amini Toosi et al. 2020; Gustafsson et al. 2019; Mangan and Oral 2015; Moschetti and 
Brattebø 2017; Pombo et al. 2016; Vilches et al. 2017). For example, Baldoni et al. presented a stochastic 
life-cycle cost methodology to evaluate the investments in energy efficiency retrofits economically. This 
study considered uncertainties associated with macroeconomic variables (e.g., inflation rate, market 
interest rate, price development rates) in determining expected returns and riskiness of these investments. 
The result of the exemplary case study in this paper showed that the macroeconomic variables and 
policies affect interest rates and therefore have an important role in economic evaluation of energy 
efficiency investments (Baldoni et al. 2019). Another study presented a framework to conduct an 
economic cost-benefit analysis for various energy efficiency upgrades using a static investment payback 
period and business rate of return. The study suggested that although energy efficiency upgrades lead to 
satisfactory energy conservation, the cost effectiveness of various upgrade measures in China cannot meet 
the profitability expectations due to the low energy price currently set in that country (Liu et al. 2018). 
Similarly, a research study presented a stepwise screening methodology for multiple building energy 
upgrade measures that considered economic and risk aspects. This study proposed building upgrade 
packages for stakeholders, calculated energy savings of various building measures, and quantified the 
associated risks of building upgrades. The proposed model was able to identify the upgrade package with 
the lowest risk and economic feasibility (Zheng et al. 2019b). A similar study presented a method to rank 
and select the most cost-effective upgrading measures. Based on life-cycle energy savings, life-cycle cost, 
and cost-effectiveness, this study ranked the selection of nine upgrading measures where lighting, air-
conditioning, and refrigeration replacement were the top three cost effective measures, respectively; while 
wall retrofit, window replacement, and roof retrofit had the least cost effectiveness (Yuan et al. 2019). 
Although the aforementioned studies provided different life-cycle cost analysis methods that are capable 
of comparing/ranking different upgrade measures, they did not consider budget constraints, and therefore 
they are not capable of identifying the optimal selection of building upgrades based on owners’ available 
budget. Moreover, these studies did not analyze a wide range of energy and water efficiency measures 
semiseriously to support decision-makers on their ongoing efforts to minimize utility costs. 
 
Several optimization models and tools were developed for selecting building upgrade measures to reduce 
energy and water consumption (Evins 2013; Harvey 2013; Mariano-Hernández et al. 2021; Sanhudo et al. 
2018). The existing studies used various methods for optimizing the selection of upgrade measures that 
include direct search methods such as linear programming and non-linear programming, evolutionary 
algorithms such as genetic algorithms, and meta-heuristic algorithms such as harmony search and particle 
swarm optimization. Hashempour et al. performed a literature review on existing optimization models in 
selecting building upgrades to identify trends and future research opportunities in this area. The study 
analyzed 153 models and showed that 41% of the papers used genetic algorithms, 13% used linear 
programming, 11% used brute-force search, and 35% used other methods for identifying building 
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upgrades (Hashempour et al. 2020). Moreover, there is a limited number of studies that applied binary 
linear programming to identify the optimal selection of upgrade measures. Despite the contribution of the 
reported studies in Hashempour et al. (2020) that used linear programming, they are incapable of (1) 
considering budget upgrade and building performance constraints, and (2) modeling a comprehensive set 
of building upgrade measures (i.e., building fixtures, equipment, envelope components, and renewable 
energy systems simultaneously). Note that standard measures, such as building equipment upgrades and 
deep upgrades such as building envelope components, should be considered together to achieve water and 
energy savings beyond 45% (PNNL 2011).  
 
Although the aforementioned studies had significant contributions in identifying optimal selection of 
building upgrades, the generated results are constrained by solution quality and/or computational efforts. 
Specifically, there are limited or no reported studies that (1) used EAUUC to economically evaluate 
various building upgrade measures to maximize savings while complying with user-specified 
requirements for building operational performance and available upgrade budgets; (2) implemented 
binary linear optimization algorithms that result in global optimum solutions in short computational time; 
and (3) modeled a wide range of upgrade measures for building fixtures and equipment as well as 
envelope components supported by updateable databases of building products. The present research study 
is designed to address the aforementioned research gaps. 
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3. Data-Driven Bridge Maintenance System to Maximize 
Performance within Available Budgets 

The objective of this chapter is to develop a data-driven system that is capable of predicting condition of 
concrete bridge elements to identify optimal selection of maintenance interventions and their timing to 
maximize performance of bridges within available budgets. The system consists of (1) machine learning 
(ML) models to predict the condition of concrete bridge elements, and (2) a bridge maintenance 
optimization model to identify optimal maintenance interventions and their timing, as shown in Figure 
3.1. 
 
The input data for the developed system is provided via a spreadsheet that includes information on: (1) 
bridge characteristics, including type, age, location, construction, and geometry; (2) operational data, such 
as average daily traffic and inventory rating; (3) bridge element data, including count and quantity of each 
element, as well as deterioration conditions based on the HI ratings; and (4) a study period, which 
represents the planning horizon for maintenance interventions, as shown in Figure 3.1. 
 
The bridge element deterioration models perform multistep forecasting of the HI elements over the 
specified study period based on the bridge’s unique specifications and ambient conditions, such as age, 
location, and average daily traffic. ML methods are used to predict the deterioration of bridge elements 
due to their capability of predicting non-stationary and nonlinear time series data. The bridge element 
deterioration forecasting models are developed in four main steps: (1) data preprocessing, where the NBI 
and NBE data are concatenated and prepared to be used for ML model development; (2) feature selection, 
where factors affecting the bridge elements’ deterioration are identified; (3) model development, where 
four different ML models are trained and tested using selected features from the NBI data; and (4) 
predictive performance evaluation, where the predicted data from the test dataset is compared with 
reported values, as shown in Figure 3.1. 
 
The maintenance intervention optimization model is designed to identify optimal selection of 
maintenance interventions and their timing to maximize bridge performance while complying with 
available annual budgets. The optimization model is developed in three main phases that focus on (1) 
identifying model decision variables, (2) formulating objective function and constraints, and (3) 
implementing model computations using binary linear programming, as shown in Figure 3.1. The present 
model is designed to evaluate the cost-effectiveness of maintenance interventions based on the 
performance level of bridge elements, as measured by their HI, and the associated maintenance costs over 
the specified study period. Note that the optimization model identifies the optimum maintenance 
interventions for bridge elements based on the predicted HI from the bridge element deterioration model, 
as shown in Figure 3.1. Binary linear programming is used to perform the optimization model 
computations due to its capability of identifying optimal solutions in a short computational time. A 
concrete bridge case study is analyzed to evaluate the performance of the system and demonstrate its 
capabilities. The present system can support decision-makers, such as highway agencies, in allocating 
limited financial resources for bridge maintenance more efficiently and cost-effectively. 

 
The present system is designed to generate output data through charts and action reports. The output data 
include: (1) annual maintenance cost charts of recommended maintenance plans within the study period; 
(2) charts of the annual bridge HI and the annual HI of individual elements over the study period; and (3) 
action reports summarizing detailed recommendations for maintenance interventions within the specified 
study period and maintenance budget. 
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Figure 3.1  System architecture and development of components 

3.1 Bridge Element Deterioration Model 

3.1.1 Data Preprocessing 

Data preprocessing is a crucial step in the development of ML models, as it ensures that data are suitable 
for further analysis and use in machine learning. This process is performed in three steps: (1) 
concatenation of the NBI and NBE data, in which the datasets are concatenated to form a comprehensive 
dataset; (2) data cleaning and redundancy elimination, in which redundant or duplicate information are 
removed; and (3) data standardization and transformation, in which numeric data are standardized using a 
standard scaler and categorical data are encoded using one-hot encoding. 
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3.1.2 Feature Selection 

The NBI and NBE databases are used to objectively assess the factors that affect the deterioration of 
concrete bridge elements. To this end, an entropy-based mutual information (MI) method from 
information theory is employed. The MI method is a nonparametric entropy-based technique that can 
detect linear and non-linear dependencies between variables. The research team selected the K-nearest 
neighbors-based MI estimation method (KNN-based MI) over other MI estimation methods that use 
“binning” of data, as it can more accurately identify mutual information (Farahani et al. 2022; Franzen et 
al. 2020; Ross 2014). In this method, MI between variable 𝑋𝑋 and 𝑌𝑌 can be calculated based on average 𝐼𝐼𝑖𝑖 
scores for all datapoints as shown in Equation (3-1) to Equation (3-3).  
 

 𝐼𝐼(𝑋𝑋,𝑌𝑌) =
∑ 𝐼𝐼𝑖𝑖𝑁𝑁
𝑖𝑖=1
𝑁𝑁

 (3-1) 

 𝐼𝐼𝑙𝑙̇ = 𝜓𝜓(𝑁𝑁) − 𝜓𝜓�𝑁𝑁𝑥𝑥𝑖𝑖� + 𝜓𝜓(𝐾𝐾) − 𝜓𝜓(𝑚𝑚𝑖𝑖) (3-2) 

 𝜓𝜓(𝑡𝑡) = ln(𝑡𝑡) −  
1
2𝑡𝑡

 (3-3) 

 
Where: 𝐼𝐼(𝑋𝑋,𝑌𝑌) is the MI between variable 𝑋𝑋 and 𝑌𝑌; 𝑁𝑁𝑥𝑥𝑖𝑖 is number of data points whose value equals 𝑥𝑥𝑖𝑖 in 
entire dataset; 𝐾𝐾 is number of neighbors that is considered for the analysis; 𝑚𝑚𝑖𝑖 is the number of neighbors 
within the distance to the 𝐾𝐾th neighbor of data point 𝑖𝑖; 𝜓𝜓(𝑡𝑡) is digamma function that can be calculated 
as shown in Equation (3-3). 

3.1.3 Machine Learning Methods 

To predict the HI of various common bridge elements in the NBE database, four ML models are 
developed for each bridge element using the most influential predictor features identified in the feature 
selection step. A range of ML techniques with various hyperparameters are tested to develop these 
models, including: (1) decision trees (DT), (2) random forests (RF), (3) gradient boosting (GB), and 
(4) support vector machines (SVM). The specific parameters and architecture of these models are outlined 
in Table 3.1. The mathematical formulations of these algorithms are not discussed here as they can be 
found in ML resources (Courville Aaron Goodfellow Ian 2016). Note that all the models are developed 
using Adam optimizer with mean squared error loss functions for 200 epochs. The ML models are 
implemented using the Python programming language and the scikit-learn library.  
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Table 3.1  The parameters of the ML models and their respective values 
ML Model Parameters Values 

DT  
Criterion function Mean squared error 

Minimum samples to split an internal node 2 
Minimum samples for leaf nodes 1 

RF 

Number of estimators (Trees) 100 
Criterion function Mean squared error 

Minimum samples to split an internal node 2 
Minimum samples for leaf nodes 1 

SVM 

Kernel Radial basis function 
Tolerance for stopping criterion 0.001 

Epsilon 0.1 
Gamma 0.05 

GB 
 

Learning rate 0.1 
Number of estimators 100 

Maximum depth 3 
Loss function Least squares regression 

Criterion function Friedman mean squared error 
Minimum samples to split an internal node 2 

Minimum samples for leaf nodes 1 

3.1.4  Predictive Performance Evaluation Metrics 

Four commonly utilized metrics for evaluating the predictive performance of machine learning models, 
including mean absolute error (MAE), mean square error (MSE), mean absolute percentage error 
(MAPE), and coefficient of determination (𝑅𝑅2 score), are employed to assess the performance of the 
developed models in this study. MAE measures the average absolute difference between the predicted and 
true values of the data points in the test dataset. This metric provides a general understanding of the 
model’s performance by conveying the magnitude of the errors made by the model in its predictions. 
MSE measures the average of the squared differences between the predicted and true values, with larger 
errors having a greater impact on the MSE value. This metric is more sensitive to outliers than MAE and 
can provide information about the model’s ability to predict data points with less frequency. MAPE 
calculates the average relative error of the data points in the test dataset as a percentage, which allows for 
comparison of error across different magnitude ranges of the true values. It can provide insight into the 
model’s overall accuracy with respect to the magnitude of the true values. 𝑅𝑅2 score, also known as the 
coefficient of determination, indicates the ability of the model to predict future samples. It is a measure of 
how well the model fits the data, with a score of 1 indicating a perfect fit and a score of 0 indicating a 
poor fit. A high 𝑅𝑅2 score suggests that the model is able to make accurate predictions using the 
information it has learned from the training data. MAE, MAPE, RSME, and 𝑅𝑅2 score can be calculated 
based on predicted and true values of datapoints, as shown in Equation (3-4) to Equation (3-7), 
respectively. 

 MAE(𝑦𝑦,𝑦𝑦�)  =
1
𝑁𝑁𝑡𝑡
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
𝑁𝑁𝑡𝑡

𝑖𝑖=1

 (3-4) 

 

SME(𝑦𝑦,𝑦𝑦�)  = �
(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

𝑁𝑁𝑡𝑡

𝑁𝑁𝑡𝑡

𝑖𝑖=1

 (3-5) 
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 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑦𝑦, 𝑦𝑦�) =
1
𝑁𝑁𝑡𝑡

−�
|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|

𝑦𝑦𝑖𝑖

𝑁𝑁𝑡𝑡

𝑖𝑖=1

 (3-6) 

 𝑅𝑅2(𝑦𝑦,𝑦𝑦�) = 1 −
� (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

𝑁𝑁𝑡𝑡
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁𝑡𝑡
𝑖𝑖=1

 (3-7) 

 
Where: 𝑦𝑦� represents the predicted value of datapoint 𝑖𝑖, 𝑦𝑦𝑖𝑖 represents the true value of datapoint 𝑖𝑖,  𝑁𝑁𝑡𝑡 is 
total number of samples in the test dataset, and 𝑦𝑦� is average value of 𝑦𝑦𝑖𝑖. 

3.2 Optimization Model Development 

3.2.1 Decision Variables 

The decision variables are designed to represent all feasible interventions for maintenance of bridge 
elements for a predefined period of study. These variables cover all the feasible maintenance 
interventions for bridge elements, including reinforced concrete deck, reinforced concrete top flange, 
prestressed concrete closed web/box girder, prestressed concrete girder/beam, reinforced concrete 
column, reinforced concrete pier wall, reinforced concrete abutment, reinforced concrete pier cap, 
reinforced concrete culvert, strip seal joint, pourable joint, steel bridge rail, reinforced concrete bridge 
rail, wearing surfaces, and steel protective coating. These alternatives are modeled using “𝑋𝑋𝑒𝑒,y,𝑖𝑖” which is 
a binary decision variable to model the selection of maintenance intervention number “𝑖𝑖”  in the year “𝑦𝑦” 
for element “𝑒𝑒” from a set of feasible alternatives, as shown in Figure 3.2. The decision variable “𝑋𝑋𝑒𝑒,y,𝑖𝑖” 
is designed to range from the first alternative intervention “𝑋𝑋𝑒𝑒,y,1” for the element “𝑒𝑒”, to alternative 
intervention “𝑋𝑋𝑒𝑒,𝑦𝑦,𝑁𝑁𝑁𝑁𝑒𝑒” representing the total number of feasible interventions “𝑁𝑁𝑀𝑀𝑒𝑒” for the element “𝑒𝑒” 
in year “𝑦𝑦”, as shown in Figure 3.2. Note that these maintenance intervention alternatives are designed to 
represent a spectrum of improvement in conditions, ranging from zero improvement, no maintenance 
intervention, to maximum repair of an element at 100% with user-defined increments such as 5%. “ 𝑦𝑦” is 
designed to range from 𝑦𝑦 = 1,  the first year in the study period, to 𝑦𝑦 =  Y  representing the total number 
of years in the study period, as shown in Figure 3.2. “ 𝑒𝑒” is designed to range from, 𝑒𝑒 = 1 for reinforced 
concrete column to 𝑒𝑒 = 15  for strip seal joints, as shown in Figure 3.2. For example, 𝑋𝑋15,3,2 = 1 
represents the selection of the 2nd maintenance intervention for element type 15, strip seal joints, in the 
year 3. 

 
Figure 3.2  Decision variables 
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3.2.2 Objective Function 

The objective function of the optimization model is designed to identify optimal selection of maintenance 
interventions and their timing to maximize performance of bridges while complying with available annual 
budgets. The bridge performance index over the study period can be calculated by weighted average of 
performance index of bridge elements, including reinforced concrete deck, reinforced concrete top flange, 
prestressed concrete closed web/box girder, prestressed concrete girder/beam, reinforced concrete 
column, reinforced concrete pier wall, reinforced concrete abutment, reinforced concrete pier cap, 
reinforced concrete culvert, strip seal joint, pourable joint, steel bridge rail, reinforced concrete bridge 
rail, wearing surfaces, and steel protective coating during the predefined study period, as shown in 
Equation (3-8). To calculate the weighted average performance index of bridge elements, the weight of 
each element can be determined through expert opinion. For example, these weights can be determined 
based on the cost of each element reconstruction and replacement. The performance of each bridge 
element is measured based on NBE’s HI. Accordingly, the condition of bridge elements for each year can 
be calculated based on the ML predictions, time of maintenance interventions, and improvement in 
conditions due to implementation of maintenance interventions, as shown in Equation (3-9). 
 

 𝑀𝑀𝑀𝑀𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑒𝑒: 𝑀𝑀𝐴𝐴𝑀𝑀𝐼𝐼 =  
∑ ∑ 𝑀𝑀𝐸𝐸𝐼𝐼𝑒𝑒,𝑦𝑦

𝑌𝑌
𝑦𝑦=1

15
e=1 × 𝑊𝑊𝑒𝑒

∑ ∑ 𝑊𝑊𝑒𝑒
𝑌𝑌
𝑦𝑦=1

15
e=1

 (3-8) 

 
Where: “𝑀𝑀𝐴𝐴𝑀𝑀𝐼𝐼” is average of bridge performance indexes over the study period; “𝑀𝑀𝐸𝐸𝐼𝐼𝑒𝑒,𝑦𝑦” is HI of 
element “𝑒𝑒” in year “𝑦𝑦” which can be calculated based on improvement in conditions due to maintenance 
interventions and predicted HI of elements, as shown in Equation (3-9); and “𝑊𝑊𝑒𝑒” is user specified 
importance weight for element “𝑒𝑒”. 
 

 𝑀𝑀𝐸𝐸𝐼𝐼𝑒𝑒,𝑦𝑦 = 𝑀𝑀𝐸𝐸𝐼𝐼𝑒𝑒,𝑦𝑦 + ��𝑋𝑋𝑒𝑒,y,𝑖𝑖 × 𝑀𝑀𝑀𝑀𝑒𝑒,y,𝑖𝑖

𝑁𝑁𝑁𝑁𝑒𝑒

i=1

𝑦𝑦

t=1

 (3-9) 

 
Where: 𝑀𝑀𝐸𝐸𝐼𝐼𝑒𝑒,𝑦𝑦 is predicted HI of element “𝑒𝑒” in year “𝑦𝑦” which is estimated using ML models; and 
𝑀𝑀𝑀𝑀𝑒𝑒,y,𝑖𝑖 is improvement in condition of element “𝑒𝑒” due to maintenance intervention “𝑖𝑖” in year “𝑦𝑦”. 
 

3.2.3 Optimization Constraints 

To ensure the practicality and feasibility of the generated solutions, three types of constraints are 
integrated in the model: (1) annual maintenance budget, (2) maintenance intervention selection, and  
(3) minimum acceptable performance of bridge elements. The annual budget constraints are integrated in 
the model to ensure that the costs of bridge maintenance interventions do not exceed the available budget 
for each year. The available budget for each year is specified by the user, as shown in Equation (3-10). 
Note that savings from year (y) are added to year (y + 1) as savings from previous years can be used for 
maintenance of bridge elements in future years, as shown in Equation (3-10). The element’s maintenance 
cost is estimated in the model based on improvement in element conditions due to implementing 
maintenance interventions, measured by NBE’s HI, and bridge element replacement costs, as shown in 
Equation (3-11). The cost of replacing bridge elements includes costs for demolishing existing elements 
(if needed), materials, and labor and is calculated based on the quantity of each element and cost 
references such as RSMeans (RSMeans 2020).  
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 ���𝑋𝑋𝑒𝑒,y,𝑖𝑖 × 𝑀𝑀𝑀𝑀𝑒𝑒,y,𝑖𝑖

𝑁𝑁𝑁𝑁𝑒𝑒

i=1

𝑡𝑡

y=1

15

e=1

 < 𝑦𝑦 × 𝑀𝑀𝐴𝐴        ∀ 𝑡𝑡 = 1, … ,𝑌𝑌    (3-10) 

 
Where: “𝑀𝑀𝑀𝑀𝑒𝑒,y,𝑖𝑖” is the cost of maintenance intervention number “𝑖𝑖”  in year “𝑦𝑦” for element “𝑒𝑒” which 
can be calculated based on construction cost of elements and improvement in their conditions due to 
maintenance interventions, as shown in Equation (3-11); and 𝑀𝑀𝐴𝐴 is the user-specified annual budget. 

𝑀𝑀𝑀𝑀𝑒𝑒,y,𝑖𝑖 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒 × �
𝑀𝑀𝑀𝑀𝑒𝑒,y,𝑖𝑖

100 − 𝑇𝑇𝐸𝐸𝐼𝐼𝑒𝑒
� (3-11) 

 
Where: 𝑀𝑀𝑀𝑀𝑀𝑀𝑒𝑒 is the construction cost of element “𝑒𝑒”, and 𝑇𝑇𝐸𝐸𝐼𝐼𝑒𝑒 is terminal HI, which represents the 
minimum acceptable condition for element “𝑒𝑒”. 
 
The maintenance intervention selection constraints are integrated in the model due to utilization of linear 
programming to restrict the optimization model to select a single maintenance intervention from the set of 
alternatives for each element in each year, as shown in Equation (3-12). Additionally, the minimum 
performance constraints are designed to guarantee that maintenance interventions are carried out on 
bridge elements prior to their performance index falling below their terminal HI, as shown in Equation (3-
13).   
 

 �𝑋𝑋𝑒𝑒,y,𝑖𝑖  
𝑁𝑁𝑁𝑁𝑒𝑒

i=1

= 1        ∀ 𝑒𝑒 = 1, … , 15    ∀ 𝑦𝑦 = 1, … ,𝑌𝑌    (3-12) 

 𝑀𝑀𝐸𝐸𝐼𝐼𝑒𝑒,𝑦𝑦 ≥ 𝑇𝑇𝐸𝐸𝐼𝐼𝑒𝑒         ∀ 𝑒𝑒 = 1, … , 15    ∀ 𝑦𝑦 = 1, … ,𝑌𝑌    (3-13) 

3.2.4 Optimization Computations 

The computations of the present model are performed using binary linear programming due to its 
capability of identifying global optimum solutions in a short computational time. The model is coded in 
MATLAB 2022b and executed using the MILP solver of Gurobi. 
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4. Optimization Model for Planning Upgrade and Maintenance 
Interventions for Buildings 

The objective of this paper is to develop a new model for identifying the selection of upgrade and 
maintenance interventions and their timing for existing buildings to (1) minimize equivalent annual 
operation and maintenance cost (EAOMC); and (2) comply with specified annual budgets, building 
operational performance, and predefined study period. To this end, the model is designed to incorporate 
reactive, preventive, and predictive maintenance strategies to optimize facility maintenance and 
equipment operability and minimize building EAOMC. A reactive strategy is applied for any unexpected 
maintenance issues that might arise during building operations such as a broken window. A preventive 
strategy is used for less critical components such as light bulbs. These components are replaced, 
regardless of their condition, before or at the end of their service life as reported by manufacturers. 
Predictive maintenance strategy is used for more costly and critical components under the effect of 
continuous degradation action, such as HVAC systems. The Weibull probability method is used to 
estimate the service lives of components with predictive maintenance strategy. Furthermore, the model 
considers upgrade interventions for each building component to identify its optimal upgrade plan and its 
timing to minimize EAOMC. Integrating maintenance and upgrade interventions can provide significant 
opportunities to optimize the use of available annual budgets for gradual upgrade of buildings. Despite the 
conventional maintenance methods that solely focus on repair and replacement interventions, the present 
model is designed to integrate building repair, replacement, and upgrade interventions to maximize 
economic benefits from building operation by reducing operational and maintenance costs.  
 
The present problem can be solved using different approaches: (1) a probabilistic approach where the 
model uses probabilities to model future conditions of building equipment and potential building 
upgrades; or (2) a deterministic approach where the model uses building maintenance strategies, energy 
simulation, and available building products in the market to generate an initial plan for maintaining and 
upgrading the building for a specified study period. The authors chose the second approach for the 
following reasons: (1) the probabilistic approach will add significant complexity to the present model and 
its search space; (2) the deterministic approach can generate specific action reports to maintain and 
upgrade buildings; (3) the results of the deterministic approach can be updated iteratively (e.g., each year) 
as actual conditions of the building are collected and new building products become available in the 
market; and (4) accidental failure and unplanned maintenance issues are considered in the deterministic 
approach by allocating a separate budget to cover unforeseen maintenance issues.     
 
The present model is expected to provide much needed support to building owners and operators in 
identifying an optimal schedule of upgrade and maintenance interventions based on the latest products in 
the market and available annual budgets. The optimization model is developed in three main phases that 
focus on the following: (1) identifying model decision variables, formulating objective function and 
constraints; (2) implementing model computations using binary linear programming; and (3) analyzing 
the performance of the optimization model using an existing building. The following sections provide 
details of each of these three development phases.  

4.1 Formulation Phase 

4.1.1 Decision Variables 

The decision variables are designed to model all feasible alternative plans for repairing, replacing, or 
upgrading (RRU) building components that affect building energy and water consumption for a 
predefined period of study. These alternatives cover all the feasible RRU plans for building components, 
including light bulbs, fixtures, and motion sensors; hand dryers; vending machines; water faucets; urinals; 
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toilets; water heaters; photovoltaic (PV) systems; elevators; cooling and heating equipment; window 
glazing and films; wall insulation; and roof insulation.  
 
The model is designed to integrate three types of decision variables: (1) 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 is a binary decision variable 
to model the selection of RRU plan number 𝑝𝑝 for component type 𝑡𝑡 in building location  𝑙𝑙 from a set of 
feasible alternatives; (2) 𝑀𝑀𝐶𝐶 𝑝𝑝 is a binary decision variable to model the selection of RRU plan number 𝑝𝑝 
for a combination of cooling system, heating system, wall insulation, roof insulation, and window glazing 
and films from a set of feasible alternatives; and (3) 𝑄𝑄 𝑝𝑝 is a binary decision variable to model the 
selection of upgrade plan number 𝑝𝑝 for a PV system. Decision variable 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 is designed to range from the 
first alternative plan 𝑀𝑀𝑡𝑡,𝑙𝑙,1 for components of type 𝑡𝑡, in space 𝑙𝑙, to alternative plan 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑁𝑁𝑡𝑡,𝑙𝑙, representing the 
total number of feasible plans 𝑁𝑁𝑡𝑡,𝑙𝑙. 𝑡𝑡 is designed to range from, 𝑡𝑡 = 1 for light fixtures to 𝑡𝑡 =  14  for 
window glazing and films. Similarly, 𝑙𝑙 is designed to range from the first space, 𝑙𝑙 = 1, that contains the 
fixture or equipment of type 𝑡𝑡 to 𝑙𝑙 =  𝑁𝑁𝐶𝐶𝑡𝑡  which represents the total number of spaces that contain the 
component type 𝑡𝑡. For example, 𝑀𝑀1,2,3 = 1 represents the selection of the third RRU plan for component 
type 1, lighting fixtures, at space #2 of the building. Decision variable 𝑀𝑀𝐶𝐶 𝑝𝑝 is designed to range from the 
first RRU plan, 𝑀𝑀𝐶𝐶 1, for the combination of the above heating and cooling system and envelope 
components to plan 𝑀𝑀𝐶𝐶 𝑁𝑁𝑐𝑐  which is the maximum number of feasible alternative RRU plans. For example, 
𝑀𝑀𝐶𝐶 4=1 represents the selection of the fourth RRU plan for the combination of the aforementioned 
components. Decision variable 𝑄𝑄𝑝𝑝  is designed to range from the first upgrade plan, 𝑄𝑄1 , for PV systems to 
plan 𝑄𝑄𝑁𝑁𝑝𝑝 representing the total number of feasible upgrade plans 𝑁𝑁𝑝𝑝. For example, 𝑄𝑄3 = 1 represents the 
selection of the third PV system upgrade plan to offset the energy demand of the building.  

In order to linearize the problem based on feasible alternative products and the remaining service lives of 
building components, the model generates all feasible RRU plans for each component in the building. 
Each RRU plan specifies each upgrade and maintenance intervention that should take place in each year. 
In this regard, generated alternative plans for the decision variable 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝  are designed as vectors with the 
length of study period 𝑌𝑌 that include the RRU intervention for each year. Note that each value in the 
vector corresponds to the intervention plan in year “y” and can be 0, -1, 1, or greater than 1 that represent, 
respectively, no interventions, repairing existing component, replacing component with the same product, 
and upgrading component with an alternative that corresponds to the value in the vector. For example, 
𝑀𝑀1,1,1(1) = 2   , 𝑀𝑀1,1,1(2) = 0, and 𝑀𝑀1,1,1(6) = 1 represent upgrading component with product ID #2 in 
year 1, no interventions in year 2, and replacing component with the same product in year 6, for light 
bulbs (𝑡𝑡 = 1), in building location #1 (𝑙𝑙 = 1), and for alternative plan 1 (𝑝𝑝 = 1). Similarly, alternative 
plan 𝑀𝑀𝐶𝐶 𝑝𝑝 is designed to represent the selection of a matrix that includes a combination of five vectors 
with the length of study period 𝑌𝑌 for cooling systems, heating systems, wall insulation, roof insulation, 
and window glazing and films in each year, respectively. For example, 𝑀𝑀𝐶𝐶 1(1,1)= -1, 𝑀𝑀𝐶𝐶 1(1,2) =
1,𝑀𝑀𝐶𝐶 1(1,3) = 2,𝑀𝑀𝐶𝐶 1(1,4) = 0,  𝑀𝑀𝑎𝑎𝑎𝑎 𝑀𝑀𝐶𝐶 1(1,5) = 0 represent repairing cooling system, replacing heating 
system with the same product, upgrading window glazing with product ID #2, no intervention for wall, 
and no intervention for roof in year 1, respectively. Finally, alternative plan 𝑄𝑄𝑝𝑝 is designed to represent a 
vector with the length of study period 𝑌𝑌 that includes upgrading PV systems for each year. 𝑄𝑄𝑝𝑝 (𝑦𝑦) is 
designed to range from zero, no installation of PV system, to installation of maximum capacity of PV 
systems with user-defined increments such as 1kW in year “y”. For example, 𝑄𝑄2 (2)  = 1 represents 
installing PV system with system capacity, such as 1kW, in year 2 to offset building energy demand. 
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4.1.2 Objective Function 

The objective function of the optimization model is designed to minimize the EAOMC of existing 
buildings. Different upgrade and maintenance interventions for building components result in unequal 
service lives. Therefore, the equivalent annual cost method is used to analyze the cost of different upgrade 
and maintenance plans because it can compare different RRU plans with different service lives. The 
EAOMC can be calculated by adding up the EAOMC of all building components, as shown in Equation 
(4-1). The EAOMC of each building component is calculated based on the net present value of RRU plan 
costs, operational costs, service life, and annuity factor, as shown in Equation (4-2) to Equation (4-8). 
Service lives of components with predictive maintenance strategy are calculated using the Weibull 
probability method. This method considers degradation as a function of time and estimates the service life 
of an RRU plan based on the component’s initial condition, time of RRU interventions, and expected 
improvement in conditions, as shown in Equation (4-9) and Equation (4-10). The component’s repair cost 
is estimated in the model based on (1) expected improvement in component conditions due to 
implementing maintenance activities, and (2) component replacement cost (Grussing and Marrano 2007), 
as shown in Equation (4-11). The upgrade or replacement costs of building components are designed to 
include demolishing existing components, purchasing new materials, and installing new building 
components. Moreover, annual operational costs include energy and water cost and annual routine 
maintenance cost such as replacing HVAC system filters. The annual energy consumption and cost of 
building components are calculated based on their technical specifications, operational schedule, and 
energy cost rate. Energy consumption and cost of cooling and heating systems are calculated using 
OpenStudio and based on building characteristics, cooling and heating system characteristics, operational 
schedule, envelope components, and energy cost rate. Similarly, energy consumption and cost of building 
water heaters are calculated using OpenStudio and based on building characteristics, water heater 
characteristics, operational schedule, and energy cost rate. Finally, building annual water consumption 
and cost are calculated using the LEED guidelines based on specifications of plumbing fixtures, type of 
building, number of full-time occupants and visitors, and water cost rate (USGBC 2018). Note that the 
performance of each building component in terms of energy and water consumption over its service life is 
assumed uniform to simplify the model computations. 

 

 𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑀𝑀 =  ���𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝  ×  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝

𝑁𝑁𝑡𝑡,𝑙𝑙

𝑝𝑝=1

𝑁𝑁𝑁𝑁𝑡𝑡

𝑙𝑙=1

 
8

𝑡𝑡=1

+ �𝑀𝑀𝐶𝐶𝑝𝑝

𝑁𝑁𝑐𝑐

𝑝𝑝=1

×  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑝𝑝 + �𝑄𝑄𝑝𝑝

𝑁𝑁𝑝𝑝

𝑝𝑝=1

× 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝑝𝑝 (4-1) 

 
Where: 𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑀𝑀 is the building equivalent annual operation and maintenance cost; 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 is the 
equivalent annual cost of RRU plan 𝑝𝑝 for component type 𝑡𝑡 in building location 𝑙𝑙 which is calculated 
based on RRU costs, service lives, and annual operational cost, as shown in Equation (4-2); 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑝𝑝 is 
the equivalent annual cost of RRU plan 𝑝𝑝 for the combination of cooling system, heating system, wall 
insulation, roof insulation, and window glazing and films, and is calculated using RRU costs, service lives 
of components, and annual operational cost, as shown in Equation (4-3); and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝑝𝑝 is the equivalent 
annual cost of upgrade plan 𝑝𝑝 for implementing PV system at the building site, and is calculated based on 
upgrade costs, service lives, and annual operational savings, as shown in Equation (4-6). 
 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧∑ 𝑁𝑁𝑀𝑀𝐸𝐸�𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) + 𝐸𝐸𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦), 𝑟𝑟,𝑦𝑦�𝑃𝑃𝑁𝑁𝑃𝑃𝑡𝑡,𝑙𝑙,𝑝𝑝

𝑦𝑦=1

𝑀𝑀�𝑀𝑀𝐶𝐶𝑃𝑃𝑡𝑡,𝑙𝑙,𝑝𝑝, 𝑟𝑟�
, 𝑡𝑡 < 4  (𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒 𝑝𝑝𝑙𝑙𝑀𝑀𝑎𝑎𝑝𝑝)

∑ 𝑁𝑁𝑀𝑀𝐸𝐸�𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) + 𝐸𝐸𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦), 𝑟𝑟,𝑦𝑦�𝐸𝐸𝑁𝑁𝑃𝑃𝑡𝑡,𝑙𝑙,𝑝𝑝
𝑦𝑦=1

𝑀𝑀�𝑀𝑀𝐶𝐶𝑃𝑃𝑡𝑡,𝑙𝑙,𝑝𝑝, 𝑟𝑟�
, 𝑡𝑡 ≥ 4  (𝑝𝑝𝑟𝑟𝑒𝑒𝑎𝑎𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒 𝑝𝑝𝑙𝑙𝑀𝑀𝑎𝑎𝑝𝑝)

 (4-2) 
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Where: 𝑁𝑁𝑀𝑀𝐸𝐸 is net present value that is calculated based on a specified discount/interest rate, and number 
of years, as shown in Equation (4-7); 𝑀𝑀 is annuity factor which is calculated based on an annual interest 
rate, 𝑟𝑟, and service life of an alternative, as shown in Equation (4-8);  𝑀𝑀𝐶𝐶𝑃𝑃𝑡𝑡,𝑙𝑙,𝑝𝑝 is predetermined service 
life of RRU plan 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 which is calculated based on manufacturer’s recommendations; 𝑀𝑀𝐶𝐶𝑃𝑃𝑡𝑡,𝑙𝑙,𝑝𝑝 is the 
estimated service life of RRU plan 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 which can be calculated based on components deterioration 
model, as shown in Equation (4-9);  𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) is repair, replacement, and upgrade cost of plan 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 in 
year 𝑦𝑦; 𝐸𝐸𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) is operational cost in year 𝑦𝑦 corresponding to RRU plan 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝. 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑝𝑝 = 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝐶𝐶 + 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝐻𝐻 + 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑊𝑊 + 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑅𝑅 + 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝐺𝐺 + 𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑝𝑝 (4-3) 

𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑋𝑋 =
∑ 𝑁𝑁𝑀𝑀𝐸𝐸�𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑝𝑝𝑋𝑋(𝑦𝑦), 𝑟𝑟,𝑦𝑦�𝐸𝐸𝑁𝑁𝑃𝑃𝑝𝑝𝑋𝑋

𝑦𝑦=1

𝑀𝑀�𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝑋𝑋 , 𝑟𝑟�
,𝑋𝑋 ∈ {𝑀𝑀,𝐸𝐸,𝑊𝑊,𝑅𝑅,𝐺𝐺} (4-4) 

𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑝𝑝 =  
∑ 𝑁𝑁𝑀𝑀𝐸𝐸�𝐸𝐸𝑀𝑀𝑀𝑀𝐶𝐶𝑝𝑝(𝑦𝑦), 𝑟𝑟, 𝑦𝑦�𝑀𝑀𝑖𝑖𝑀𝑀(𝐸𝐸𝑁𝑁𝑃𝑃𝑝𝑝𝐶𝐶 ,𝐸𝐸𝑁𝑁𝑃𝑃𝑝𝑝𝐻𝐻,𝐸𝐸𝑁𝑁𝑃𝑃𝑝𝑝𝑊𝑊,𝐸𝐸𝑁𝑁𝑃𝑃𝑝𝑝𝑅𝑅,𝐸𝐸𝑁𝑁𝑃𝑃𝑝𝑝𝐺𝐺)
𝑦𝑦=1

𝑀𝑀�𝑀𝑀𝑖𝑖𝑎𝑎(𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝐶𝐶 ,𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝐻𝐻 ,𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝑊𝑊 ,𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝑅𝑅 ,𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝐺𝐺), 𝑟𝑟�
 (4-5) 

 
Where: 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝐶𝐶, 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝐻𝐻, 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑊𝑊, 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝑅𝑅, 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝𝐺𝐺 are equivalent annual RRU cost of cooling 
system, heating system, wall insulation, roof insulation, and window glazing and film corresponding to 
combination 𝑀𝑀𝐶𝐶 𝑝𝑝, respectively, and are calculated using RRU costs and service lives of components, as 
shown in Equation (4-4); 𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑝𝑝 is equivalent annual operational cost corresponding to combination 
𝑀𝑀𝐶𝐶 𝑝𝑝, and is calculated using operational costs in each year, as shown in Equation (4-5); 𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑝𝑝𝑋𝑋(𝑦𝑦) is 
repair, replacement, and upgrade cost for component 𝑋𝑋 in year 𝑦𝑦 corresponding to combination 𝑀𝑀𝐶𝐶 𝑝𝑝; 
𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝑋𝑋 is the estimated service life for component 𝑋𝑋 corresponding to combination 𝑀𝑀𝐶𝐶 𝑝𝑝; 𝐸𝐸𝑀𝑀𝑀𝑀𝐶𝐶𝑝𝑝(𝑦𝑦) is 
operational cost in year 𝑦𝑦 corresponding to combination 𝑀𝑀𝐶𝐶 𝑝𝑝. 𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝐶𝐶 ,𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝐻𝐻 ,𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝑊𝑊 ,𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝑅𝑅 ,𝑀𝑀𝐶𝐶𝑃𝑃𝑝𝑝𝐺𝐺  are 
estimated service lives for cooling system, heating system, wall insulation, roof insulation, and window 
glazing and film corresponding to combination 𝑀𝑀𝐶𝐶 𝑝𝑝, respectively. 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝑝𝑝 =  
∑ 𝑁𝑁𝑀𝑀𝐸𝐸�𝑅𝑅𝑀𝑀𝑄𝑄𝑝𝑝(𝑦𝑦) + 𝐸𝐸𝑀𝑀𝑄𝑄𝑝𝑝(𝑦𝑦), 𝑟𝑟,𝑦𝑦�𝐸𝐸𝑁𝑁𝑃𝑃𝑄𝑄𝑝𝑝
𝑦𝑦=1

𝑀𝑀�𝑀𝑀𝐶𝐶𝑃𝑃𝑄𝑄𝑝𝑝, 𝑟𝑟�
 (4-6) 

 
𝑀𝑀𝑀𝑀𝐸𝐸𝑀𝑀𝑝𝑝 is equivalent annual operational cost corresponding to combination 𝑀𝑀𝐶𝐶 𝑝𝑝. 𝑀𝑀𝐶𝐶𝑃𝑃𝑄𝑄𝑝𝑝is estimated 
service life of PV system upgrade plan 𝑄𝑄𝑝𝑝; 𝑅𝑅𝑀𝑀𝑄𝑄𝑝𝑝(𝑦𝑦) is upgrade cost in year 𝑦𝑦 corresponding to upgrade 
plan 𝑄𝑄𝑝𝑝; 𝐸𝐸𝑀𝑀𝑄𝑄𝑝𝑝(𝑦𝑦) is operational cost of PV systems in year 𝑦𝑦 corresponding to upgrade plan 𝑄𝑄𝑝𝑝.  
 

 𝑁𝑁𝑀𝑀𝐸𝐸(𝐹𝐹𝑀𝑀, 𝑟𝑟,𝑦𝑦) =
FC

(1 + 𝑟𝑟)𝑦𝑦 (4-7) 

 𝑀𝑀(𝐶𝐶𝑃𝑃, 𝑟𝑟) =
1 − 1

(1 + 𝑟𝑟)𝑁𝑁𝑃𝑃
𝑟𝑟

 (4-8) 

 
Where:  𝐹𝐹𝑀𝑀 is the future cost at year number 𝑦𝑦, 𝑟𝑟 is discount rate, and 𝐶𝐶𝑃𝑃 is service life of RRU plan. 
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 𝑀𝑀𝐶𝐶𝑃𝑃𝑡𝑡,𝑙𝑙,𝑝𝑝 =  𝑦𝑦 +  𝛽𝛽𝑡𝑡,𝑙𝑙 ×  

⎝

⎛
log �

𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦)
𝑇𝑇𝑀𝑀𝑡𝑡,𝑙𝑙

�

log �100
𝑇𝑇𝑀𝑀𝑡𝑡,𝑙𝑙

�
⎠

⎞

1 𝛼𝛼𝑡𝑡,𝑙𝑙�

 (4-9) 

 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) = 𝐼𝐼𝑀𝑀𝑡𝑡,𝑙𝑙 × �
100
𝑇𝑇𝑀𝑀𝑡𝑡,𝑙𝑙

�
− ( 𝑦𝑦

𝛽𝛽𝑡𝑡,𝑙𝑙
)𝛼𝛼𝑡𝑡,𝑙𝑙

+ 𝑀𝑀𝑀𝑀𝑡𝑡,𝑙𝑙 (4-10) 

Where: 𝛽𝛽𝑡𝑡,𝑙𝑙  is Weibull deterioration function parameter for service life adjustment of component type 𝑡𝑡 in 
location 𝑙𝑙; 𝛼𝛼𝑡𝑡,𝑙𝑙 is degradation factor for component type 𝑡𝑡 in location 𝑙𝑙;  𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) is component condition 
in year 𝑦𝑦 which is calculated based on initial condition 𝐼𝐼𝑀𝑀𝑡𝑡,𝑙𝑙, as shown in Equation (4-10); 𝑇𝑇𝑀𝑀𝑡𝑡,𝑙𝑙 is a 
terminal condition index value (minimum acceptable condition of components) for component type 𝑡𝑡 in 
location 𝑙𝑙; and 𝑀𝑀𝑀𝑀𝑡𝑡,𝑙𝑙 is improvement in condition due to maintenance intervention for component type 𝑡𝑡 
in location 𝑙𝑙. Note that 𝛼𝛼 and 𝛽𝛽 parameters of the Weibull deterioration function depend on the 
operational and environmental condition of components. These parameters should be determined based 
on building conditions data and expert opinion.  
 

𝑅𝑅𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) =  𝑅𝑅𝑀𝑀𝑡𝑡,𝑙𝑙 × �
100− 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦)

100− 𝑇𝑇𝑀𝑀𝑡𝑡,𝑙𝑙
� (4-11) 

 
Where: 𝑅𝑅𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) is the estimated repair cost for RRU plan 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 in year 𝑦𝑦, and 𝑅𝑅𝑀𝑀𝑡𝑡,𝑙𝑙 is cost of replacement 
of existing component type 𝑡𝑡 in location 𝑙𝑙 with same product.  

4.1.3 Constraints 

To ensure that the developed model provides feasible and practical solutions, the optimization model 
integrates five types of constraints: (1) annual operation and maintenance budget, (2) upgrade and 
maintenance plan alternative selection, (3) service life of building fixtures and equipment,  
(4) expectations of building operational performance, and (5) PV system design requirements. The annual 
budget constraints are integrated into the model to ensure that the operation and maintenance costs of a 
building do not exceed the available budget for each year. The available budget for each year is specified 
by the user in addition to any savings from the previous year, as shown in Equation (4-12) and Equation 
(4-13). Note that a user-specified percentage of the annual budget will be reserved in each year for any 
unexpected maintenance issues that might arise, such as a broken window, as shown in Equation (4-13). 
 

 

𝑀𝑀𝐴𝐴 − 𝑅𝑅𝐴𝐴 > 𝑇𝑇𝑀𝑀1 

𝑦𝑦 × 𝑀𝑀𝐴𝐴 − 𝑅𝑅𝐴𝐴 > � 𝑇𝑇𝑀𝑀𝑦𝑦

𝐾𝐾

𝑦𝑦 = 1

   ∀K = 2, … ,𝑌𝑌 (4-12) 
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𝑇𝑇𝑀𝑀𝑦𝑦 = ���𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝  ×  �𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) + 𝐸𝐸𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦)�

𝑁𝑁𝑡𝑡,𝑙𝑙

𝑝𝑝=1

𝑁𝑁𝑁𝑁𝑡𝑡

𝑙𝑙=1

 
8

𝑡𝑡=1

+ �𝑀𝑀𝐶𝐶𝑝𝑝

𝑁𝑁𝑐𝑐

𝑝𝑝=1

× �𝐸𝐸𝑀𝑀𝑀𝑀𝐶𝐶𝑝𝑝(𝑦𝑦) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝐸𝐸𝑝𝑝(𝑦𝑦) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑝𝑝(𝑦𝑦) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑊𝑊𝑝𝑝(𝑦𝑦) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑅𝑅𝑝𝑝(𝑦𝑦)

+ 𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝐺𝐺𝑝𝑝(𝑦𝑦)� + �𝑄𝑄𝑝𝑝

𝑁𝑁𝑝𝑝

𝑝𝑝=1

×  �𝑅𝑅𝑀𝑀𝑄𝑄𝑝𝑝(𝑦𝑦) + 𝐸𝐸𝑀𝑀𝑄𝑄𝑝𝑝(𝑦𝑦)� 

(4-13) 

 
Where: 𝑇𝑇𝑀𝑀𝑦𝑦 is total upgrade and maintenance cost in year 𝑦𝑦 that is calculated based on Equation (4-13), 
𝑅𝑅𝐴𝐴 is a user-specified reserved budget for unexpected maintenance issues, 𝑀𝑀𝐴𝐴 is available annual budget, 
and 𝑌𝑌 is number of years of a predefined period of study. 
 
The building upgrade and maintenance plan alternative selection constraints are designed to limit the 
optimization model to select only one plan from the feasible set of plans, as shown in Equation (4-14) to 
Equation (4-16). 

 �𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 

𝑁𝑁𝑡𝑡,𝑙𝑙

𝑝𝑝=1

= 1        ∀ 𝑡𝑡 = 1, … , 8    ∀ 𝑙𝑙 = 1, … ,𝑁𝑁𝐶𝐶𝑡𝑡     (4-14) 

 �𝑀𝑀𝐶𝐶𝑝𝑝

𝑁𝑁𝑐𝑐

𝑝𝑝=1

= 1 (4-15) 

 �𝑄𝑄𝑝𝑝

𝑁𝑁𝑝𝑝

𝑝𝑝=1

= 1 (4-16) 

 
The components’ service life constraints are integrated into the model to ensure that building equipment 
and components are repaired, replaced, or upgraded before their service life end. For example, all 
building components in all years should have remaining service lives equal or greater than zero for all the 
years in the study period 𝑌𝑌, as shown in Equation (4-17). 
 

 𝑅𝑅𝐶𝐶𝑃𝑃𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) ≥ 0    ∀ 𝑡𝑡 = 1, … , 14    ∀ 𝑙𝑙 = 1, … ,𝑁𝑁𝐶𝐶𝑡𝑡    ∀𝑦𝑦 = 1, … ,𝑌𝑌 (4-17) 

 
Where 𝑅𝑅𝐶𝐶𝑃𝑃𝑡𝑡,𝑙𝑙,𝑝𝑝(𝑦𝑦) is the remaining service life of building component 𝑀𝑀𝑡𝑡,𝑙𝑙,𝑝𝑝 in year 𝑦𝑦 of the study period 
𝑌𝑌.   

To ensure that upgraded or replaced items have the required performance and compatibility with the 
existing function of the building, operational performance constraints are integrated into the model. 
Moreover, the model is designed to allow defining increase or reduction percentages for the operational 
building performance to provide flexibility for decision-makers to increase or reduce the performance of 
the building. For example, the model is capable of upgrading water heaters with similar equipment that 
have equivalent water heating capacity, or equipment with reduced heating capacity based on a 
predefined and feasible reduction percentage, as shown in Equation (4-18). Similarly, the model is 
capable of upgrading other equipment or components with products that have equivalent performance, or 
user-specified performance for space heating and cooling capacity and lighting levels. 
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 𝑀𝑀𝑊𝑊𝐸𝐸𝑀𝑀𝑡𝑡,𝑙𝑙 ∗  �1 − 𝑀𝑀𝑅𝑅𝑡𝑡,𝑙𝑙� ≤ 𝑊𝑊𝐸𝐸𝑀𝑀𝑙𝑙,𝑝𝑝 
∀ 𝑦𝑦 = 1, … ,𝑌𝑌  

(4-18) 

Where, 𝑀𝑀𝑊𝑊𝐸𝐸𝑀𝑀𝑡𝑡,𝑙𝑙  is the capacity of existing water heater at location 𝑙𝑙 of the building, 𝑀𝑀𝑅𝑅𝑡𝑡,𝑙𝑙 is the allowed 
percentage reduction in capacity of the water heater at location 𝑙𝑙 of the building, and 𝑊𝑊𝐸𝐸𝑀𝑀𝑙𝑙,𝑝𝑝 is the 
capacity of water heater in the year 𝑦𝑦 of RRU plan 𝑀𝑀7,𝑙𝑙,𝑝𝑝. The solar panels constraint is designed to ensure 
that the required area for implementation of solar panels does not exceed the roof area, as shown in 
Equation (4-19). 

 𝑀𝑀𝑝𝑝(𝑦𝑦) ≤ 𝑀𝑀𝑅𝑅𝑀𝑀      ∀ 𝑝𝑝 = 1, … ,𝑁𝑁𝑝𝑝   ∀ 𝑦𝑦 = 1, … ,𝑌𝑌 (4-19) 
 
Where, 𝑀𝑀𝑝𝑝(𝑦𝑦) is the required area for implementing PV system in year 𝑦𝑦 of upgrade plan 𝑝𝑝, and 𝑀𝑀𝑅𝑅𝑀𝑀 is 
the available roof area for installing PV system. 

4.2 Implementation Phase 

The developed model is implemented using MATLAB 2019b software in six main steps: (1) specifying 
model input data; (2) creating comprehensive databases of building products, including fixtures, 
equipment, and building envelope components that contain product specifications and cost data;  
(3) generating feasible alternative RRU Plans; (4) performing building energy simulations using 
OpenStudio; (5) executing model computations using binary linear programming to identify optimal 
building upgrades and maintenance plans; and (6) generating  upgrade and maintenance plans in tabular 
and graphical formats to highlight recommendations for building upgrade and maintenance interventions 
for the study period. The following sections discuss each of these steps in more detail.  

4.2.1 Model Input 

The buildings’ input data to execute the present model computations can be collected based on 
construction documents, energy bills, and as-built drawings. The model input data are designed to include 
the following: (1) building general information such as location, geometry and spaces, envelope and 
interior construction, number of full-time occupants and visitors, operational schedule, and operational 
performance levels; (2) HVAC systems and thermal zones; (3) billing rates for electricity, gas, water, and 
discount rate. These data are collected to generate an OpenStudio model where they can be used to 
estimate the energy consumption of HVAC systems and water heaters. Furthermore, spreadsheets are 
used to collect the following: (1) existing building operational data such as building type, the number of 
full-time occupants and visitors, current energy and water consumption of building from utility bills, and 
operational performance levels; (2) financial data such as annual operation and maintenance budget, 
annual discount rate and escalation in utility rates, billing rates for electricity, and gas and water 
consumption; and (3) existing building component data such as count of each component in each space, 
specifications, installation dates, and deterioration conditions. In order to assess the existing conditions of 
building components, a building condition index (BCI) is used for building components to identify their 
conditions based on a score that ranges from 0 to 100 (Uzarski and Burley 1997). The model can also 
consider simpler condition assessment methods such as the direct condition rating method (USACE 
ERDC-CERL 2007), which can be used for non-structural building components such as wall insulation. 
Direct condition rating uses visual inspections to evaluate building components based on nine condition 
categories, including Red, Amber, and Green, where each rating category is divided into three classes 
denoted by high (+), low (-), and middle. Each of these classes corresponds to a value between 0 to 100 as 
demonstrated in USACE ERDC-CERL (2007). 
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4.2.2 Data Bases of Building Products 

To facilitate data collection of existing building fixtures and equipment as well as identifying an optimal 
selection of building upgrade and maintenance plans, the model integrates databases of building products. 
The databases are designed to include data on energy efficient fixtures and equipment, water efficient 
fixtures, and building envelope components. Energy efficient fixtures and equipment include lighting 
bulbs, motion sensors, hand dryers, water heaters, vending machines, elevators, HVAC systems, and PV 
systems. Water efficient fixtures include water faucets, urinals, and toilets. Envelope components include 
wall insulation, roof insulation, and window glazing and films. The model is designed to search products 
in the databases to identify feasible alternatives for the existing components. These databases are 
designed to store data of the above products, including (1) commercial information of products such as 
brand name and model number, unit price, and vendor name and website; (2) product specifications and 
operational characteristics such as life expectancy, and energy and water consumption data; and (3) 
installation costs of building components based on RSMeans building construction cost data (RSMeans 
2020). To collect and update the integrated building product databases, a data collection module is 
developed in MATLAB to automatically fetch the above product data from vendor and supplier websites 
such as Home Depot. Note that the data collection module is customized based on vendors’ websites as 
there is no common standard for suppliers to present and detail their products. The above module is 
designed to update the databases periodically, such as monthly. To update the existing data, the data 
collection module uses the stored product names and URLs to update their commercial information such 
as their unit price and availability. Moreover, the developed module is capable of searching the vendors’ 
websites to identify new products as they become available. Note that the unit cost of large equipment 
such as HVAC equipment is challenging to obtain due to the unavailability of data in online sources. 
Therefore, the authors reached out to a few vendors to receive quotes for equipment costs as needed for 
the database.  Ensuring that the products in the databases are current enables the model to generate up-to-
date and practical solutions. Accordingly, this optimization model is expected to bridge the gap between 
(1) building owners and operators that continuously search for solutions to upgrade their buildings, and 
(2) vendors and suppliers that offer efficient products for the operation of existing buildings.  

4.2.3 Data Preprocessing 

Based on the operational performance and service life constraints, the model searches the integrated 
databases for feasible alternative products and creates a set of RRU alternative plans for every building 
component. Next, the annual RRU cost, operational cost, and EAOMC of these RRU plans are calculated 
and stored in a database where they can be recalled during the optimization computations. Moreover, all 
the feasible scenarios for the combination of HVAC systems, wall insulation, roof insulation, and glazing 
alternative RRU plans are identified and stored in a database where they can be used during the energy 
simulation phase and before running the optimization model computations.  
 
The present model uses OpenStudio software to calculate cooling and heating energy consumption. In the 
first step, the model identifies all feasible combination scenarios of existing components and alternative 
upgrades for HVAC equipment, wall insulation, roof insulation, and window glazing and films. Next, 
MATLAB software generates OpenStudio measures with the input arguments based on the specifications 
of feasible alternatives. Then, the model uses OpenStudio Command Line Interface (OSCLI) to apply 
those measures to the seed building model. Finally, energy simulation is performed, and energy 
simulation results are stored in a database where they can be recalled during the optimization 
computations. Similarly, the present model is designed to identify feasible alternatives for water heaters 
and use OpenStudio to calculate their annual energy consumption. Note that the present model analyzes 
the replacement of existing HVAC system components and water heaters with comparable equipment. 
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4.2.4 Model Computations 

After performing energy simulations of alternatives for combinations of HVAC systems and building 
envelope components, and generating RRU alternative plans for all building components, the model 
formulates the decision variables, constraints, and objective functions. The optimization model uses 
binary linear programming to execute its computations due to its capability of (1) modeling the objective 
function and constraints using linear functions, and (2) identifying global optimum solutions in a short 
computational time. The model formulation is coded in MATLAB2019b and the model computations are 
executed using mixed integer linear programming (MILP) solver of Gurobi (GUROBI 2020).  

4.2.5  Model Output 

The present model is designed to generate its output data in chart and action report formats. The output 
data include: (1) action reports that summarize detailed recommendations for upgrade and maintenance 
interventions within the specified study period and annual operation and maintenance budget;  
(2) economic charts of recommended building upgrade and maintenance plans such as annual costs, 
savings, and EAOMC during the study period; and (3) charts of buildings’ annual operation and 
maintenance costs during the study period. 
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5. Case Studies 

5.1 Bridge Maintenance System Evaluation 

5.1.1 Machine Learning Model  

Preprocessing is performed in the initial step to prepare the data for the development of machine learning 
(ML) models. In the present study, based on NBI and NBE databases, data of concrete bridges located in 
Colorado from 2014 to 2022 are extracted and concatenated to objectively evaluate the importance of the 
factors affecting concrete bridge element deterioration. This time frame was chosen as NBE data are only 
available after 2014. Using item 43 from the NBI, which categorizes the main structure type, concrete 
bridges with main structure types of “concrete,” “concrete continuous,” “prestressed concrete,” and 
“prestressed concrete continuous” were selected, resulting in 5,576 unique concrete bridges, representing 
62.5% of all bridges in Colorado. The identification number of the selected concrete bridges in the NBI 
was used to measure the frequency of constituent elements from the NBE to identify the most frequent 
concrete bridge elements. The most common elements—including reinforced concrete deck, reinforced 
concrete top flange, prestressed concrete closed web/box girder, prestressed concrete girder/beam, 
reinforced concrete column, reinforced concrete pier wall, reinforced concrete abutment, reinforced 
concrete pier cap, reinforced concrete culvert, strip seal joint, pourable joint, steel bridge rail, reinforced 
concrete bridge rail, wearing surfaces, and steel protective coating—were selected for analysis, as shown 
in Table 5.1. The NBI and NBE databases were then concatenated using the bridge identification number 
and year of inspections to generate a comprehensive and uniform database. The NBI contains data on 
bridge design, specification, operational data, and condition rating of primary components, such as deck, 
superstructure, and substructure. Out of 142 features reported in the NBI, 72 features that have no impact 
on bridge element deterioration were eliminated. For example, item 19, which specifies the bypass/detour 
length, was removed as it does not affect deterioration of the bridge elements. Furthermore, 15 features 
that report similar information were removed to minimize multicollinearity among the predictor features. 
For example, item 9, which reports the location of bridges, was eliminated as it reports the same 
information as items 16 and 17, longitude and latitude, respectively. Additionally, nine features related to 
NBI condition ratings and inspections were removed as the objective of the study is to predict the HI 
based on factors affecting bridge deterioration. After removing the redundant features in the 
preprocessing step, 46 features were kept for the feature selection step. In the final step of preprocessing, 
the numeric data were standardized using the standard scaler, and categorical data were encoded using 
“one-hot encoding.” 
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Table 5.1  Percent frequency of common concrete bridge elements in Colorado 

Number NBE Element 
Number Description Element Count Frequency 

Percentage 

1 215 Reinforced Concrete 
Abutment 3,903 70% 

2 515 Steel Protective Coating 3,883 70% 
3 330 Steel Bridge Rail 3,867 69% 
4 510 Wearing Surfaces 3,280 59% 
5 12 Reinforced Concrete Deck 2,818 51% 

6 109 Prestressed Concrete 
Girder/Beam 1,882 34% 

7 234 Reinforced Concrete Pier Cap 1,731 31% 
8 241 Reinforced Concrete Culvert 1,622 29% 
9 301 Pourable Joint 1,575 28% 

10 331 Reinforced Concrete Bridge 
Rail 1,156 21% 

11 205 Reinforced Concrete Column 1,092 20% 

12 210 Reinforced Concrete Pier 
Wall 1,047 19% 

13 16 Reinforced Concrete Top 
Flange 937 17% 

14 300 Strip Seal Joint 922 17% 

15 104 Prestressed Concrete Closed 
Web/Box Girder 874 16% 

 
In the present study, the KNN-based mutual information (MI) approach was utilized to identify the 
features that have the highest impact on the health index (HI) of each bridge element. To this end, 
National Bridge Inventory (NBI) and National Bridge Element (NBE) data are analyzed. The accuracy of 
the KNN-based approach is dependent on the selected value of k. However, there is no established 
method for determining the optimal value of k for the KNN approach (Suzuki et al. 2008). To account for 
this, a range of k values from 3 to 20 were tested and the ranking of the variables for each of the bridge 
elements remained consistent. MI represents the amount of information that a specific feature can provide 
about the target variable and is measured in bits. The calculated MI values for each element were then 
normalized by the entropy of the HI of the element, also measured in bits, to quantify how much a known 
feature can reduce the uncertainty in the prediction of HI. The resulting unitless values of “bits/bits” were 
used to create a heat map of the top 20 features and their normalized MI for each element, as shown in 
Figure 5.1. The features with normalized MI values above 2% were selected to develop the ML models. 
Note that the 2% threshold was determined through a trial-and-error process to ensure the highest 
predictive performance of the models. 
 
The results of the analysis indicate that several factors have a significant impact on the deterioration of 
various bridge elements. Age is found to have the strongest MI with the deterioration of reinforced 
concrete abutments, steel protective coatings, steel bridge rails, wearing surfaces, reinforced concrete 
decks, prestressed concrete girders/beams, reinforced concrete pier caps, pourable joints, reinforced 
concrete bridge rails, reinforced concrete columns, reinforced concrete pier walls, reinforced concrete top 
flanges, strip seal joints, prestressed concrete closed web/box girders, and reinforced concrete 
girders/beams. Latitude and longitude also have significant impact on the deterioration of various bridge 
elements. Longitude has the strongest MI with the deterioration of reinforced concrete abutments, steel 
protective coatings, steel bridge rails, wearing surfaces, reinforced concrete decks, prestressed concrete 
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girders/beams, reinforced concrete pier caps, pourable joints, reinforced concrete bridge rails, reinforced 
concrete columns, reinforced concrete pier walls, reinforced concrete top flanges, strip seal joints, 
prestressed concrete closed web/box girders, and reinforced concrete girders/beams, as shown in Figure 
5.1. This correlation may be attributed to various factors related to climate and weather that can contribute 
to bridge component deterioration. For example, temperature fluctuations and exposure to moisture and 
humidity can cause concrete to expand and contract, leading to cracks and other forms of damage over 
time. Structure length and length of maximum span are found to have a considerable MI with the 
deterioration of various bridge elements. Structure length is found to have the strongest MI with the 
deterioration of steel protective coatings, steel bridge rails, reinforced concrete decks, prestressed 
concrete girders/beams, reinforced concrete pier caps, and reinforced concrete bridge rails, as shown in 
Figure 5.1. The length of maximum span is found to have the strongest MI with the deterioration of steel 
protective coatings, steel bridge rails, reinforced concrete decks, prestressed concrete girders/beams, 
reinforced concrete pier caps, reinforced concrete bridge rails, and reinforced concrete columns, as shown 
in Figure 5.1. Moreover, average daily traffic is found to have the strongest MI with the deterioration of 
steel protective coatings, steel bridge rails, and reinforced concrete decks, as shown in Figure 5.1. 
Operating rating is found to have the strongest MI with the deterioration of steel protective coatings, steel 
bridge rails, and reinforced concrete decks, as shown in Figure 5.1. Additionally, the results of the 
analysis revealed that the type of wearing surface has a significant impact on the HI of the reinforced 
concrete deck element, as shown in Figure 5.1. The analysis showed that the type of wearing surface was 
the most influential factor in determining the deterioration of this element. Similarly, the bridge roadway 
width was found to be a major factor influencing the HI of the reinforced concrete pier wall element, as 
shown in Figure 5.1. Finally, the deck width was identified as a major contributor to the HI of the 
reinforced concrete girder/beam element, as shown in Figure 5.1.  
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Figure 5.1  Impact of various features on the deterioration of bridge elements 

To evaluate the performance of the developed ML models, k-fold (k=5) cross validation is used. In this 
process, the data are divided into k exclusive subsets, where k is set to 5, and each model is trained on k-1 
subsets (80% of data) and tested on the remaining subset (20% of data) in each iteration. This approach 
provides a distribution of errors that assesses the general applicability of the model to represent the 
variation in the dataset. Additionally, four common evaluation metrics, including MAE, MSE, MAPE, 
and 𝑅𝑅2, are applied to evaluate the predictive performance of the models, as shown in Table 5.2. The 
values of predictive performance metrics vary over different elements, but a similar ranking of models 
can be observed. Based on the results of predictive performance metrics, the random forest (RF) method 
has the best performance in terms of MAE, MSE, MAPE, and 𝑅𝑅2 metrics for all the elements. For 
example, RF has the best performance in predicting the HI of reinforced concrete deck with MAE, 
MAPE, MSE, and 𝑅𝑅2 with values of 0.015, 2.035%, 0.003, and 0.760, respectively. The MAE metric 
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indicates that RF has the lowest prediction uniform error across the dataset compared with other methods. 
The MAPE metric indicates that RF has the lowest relative error with respect to the magnitude of target 
values. Similarly, the MSE metric indicates that RF has the best performance with respect to the 
magnitude of errors. 𝑅𝑅2 metric indicates that, among the tested models, RF can best explain the variance 
of the HI for each of the elements. Finally, based on the aforementioned results, RF was selected to 
predict the deterioration of bridge elements in the optimization model due to its accuracy in predicting 
conditions of bridge elements. 
 

Table 5.2  Predictive performance of the developed ML models 
NBE 

Element 
Number 

Element Name Model MAE MAPE MSE 𝑅𝑅2 

12 Reinforced Concrete Deck 

RF 0.015 2.035% 0.003 0.760 
DT 0.017 2.245% 0.004 0.656 
GB 0.017 2.372% 0.003 0.781 

SVM 0.071 7.953% 0.007 0.419 

16 
Reinforced Concrete Top 

Flange 

RF 0.013 1.710% 0.002 0.841 
GB 0.014 1.861% 0.002 0.850 
DT 0.015 1.975% 0.003 0.751 

SVM 0.067 7.475% 0.006 0.479 

104 Prestressed Concrete Closed 
Web/Box Girder 

RF 0.006 0.686% 0.001 0.710 
DT 0.006 0.694% 0.001 0.647 
GB 0.006 0.781% 0.001 0.730 

SVM 0.068 7.040% 0.005 0.338 

109 Prestressed Concrete 
Girder/Beam 

RF 0.011 1.482% 0.002 0.745 
DT 0.011 1.557% 0.002 0.668 
GB 0.012 1.662% 0.002 0.761 

SVM 0.073 7.892% 0.007 0.134 

110 Reinforced Concrete 
Girder/Beam 

RF 0.007 0.898% 0.001 0.874 
DT 0.007 0.905% 0.001 0.835 
GB 0.007 0.928% 0.001 0.884 

SVM 0.075 7.913% 0.006 0.191 

205 Reinforced Concrete 
Column 

RF 0.016 2.056% 0.003 0.799 
DT 0.016 2.104% 0.003 0.743 
GB 0.018 2.367% 0.002 0.817 

SVM 0.078 8.632% 0.008 0.404 

210 Reinforced Concrete Pier 
Wall 

DT 0.011 1.440% 0.002 0.792 
RF 0.011 1.440% 0.002 0.827 
GB 0.013 1.727% 0.002 0.838 

SVM 0.077 8.361% 0.007 0.342 

215 Reinforced Concrete 
Abutment 

RF 0.015 1.999% 0.002 0.798 
DT 0.016 2.095% 0.003 0.739 
GB 0.017 2.305% 0.002 0.827 

SVM 0.074 8.408% 0.007 0.378 
234 RF 0.008 1.116% 0.001 0.907 
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Reinforced Concrete Pier 
Cap 

DT 0.009 1.168% 0.001 0.875 
GB 0.009 1.174% 0.001 0.914 

SVM 0.069 7.396% 0.006 0.511 

300 Strip Seal Joint 

RF 0.058 8.918% 0.015 0.564 
GB 0.060 9.198% 0.012 0.644 
DT 0.062 9.290% 0.021 0.384 

SVM 0.092 13.808% 0.015 0.536 

301 Pourable Joint 

RF 0.040 7.399% 0.011 0.659 
GB 0.043 7.974% 0.009 0.709 
DT 0.044 7.814% 0.015 0.524 

SVM 0.088 12.700% 0.013 0.573 

330 Steel Bridge Rail 

RF 0.011 1.679% 0.003 0.796 
DT 0.012 1.765% 0.003 0.738 
GB 0.014 2.008% 0.002 0.822 

SVM 0.076 8.369% 0.007 0.415 

331 
Reinforced Concrete Bridge 

Rail 

RF 0.022 3.064% 0.004 0.746 
DT 0.023 3.202% 0.005 0.669 
GB 0.026 3.561% 0.004 0.771 

SVM 0.077 9.003% 0.008 0.455 

510 Wearing Surfaces 

RF 0.022 3.070% 0.004 0.651 
GB 0.024 3.383% 0.004 0.698 
DT 0.024 3.338% 0.006 0.526 

SVM 0.074 8.535% 0.008 0.366 

515 Steel Protective Coating 

RF 0.016 3.371% 0.005 0.745 
DT 0.017 3.482% 0.006 0.683 
GB 0.020 3.954% 0.004 0.772 

SVM 0.080 9.885% 0.009 0.500 
 

5.1.2 Optimization Results 

A case study of a concrete bridge located in Colorado is analyzed to illustrate the use of the developed 
system and demonstrate its unique capabilities. The bridge was constructed in 2004 with the primary 
function of facilitating vehicular traffic and pedestrian walkway passage over the Coal Creek waterway 
with average daily traffic (ADT) of 5,245 vehicles. The bridge is classified as a local route and has a total 
length of 264.1 feet (80.5 meters) with the largest span measuring 128.3 feet (39.1 meters). The bridge 
comprises two main spans constructed using prestressed concrete. The main spans are designed using the 
stringer/multi-beam and the deck type is concrete cast-in-place with a bituminous wearing surface. The 
optimization model is used to identify the optimal maintenance interventions for all the bridge elements, 
including reinforced concrete deck, prestressed concrete beams, reinforced concrete columns, reinforced 
concrete abutments, reinforced concrete piers, strip seal expansion joints, pourable joint seals, steel bridge 
rail, reinforced concrete bridge rail, wearing surfaces, and steel protective coating. 
 
The case study input data are facilitated using NBI and NBE datasets to perform the present optimization 
analysis. The collected data include information on the bridge’s characteristics, such as bridge type, age, 
location, design and materials, and geometry, as well as operational data such as ADT and inventory 
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rating. Additionally, data on specific bridge elements, including the quantity and condition of each 
element as determined by HI ratings, are inputted into the model. A sample of the input data that 
summarize the main bridge characteristics is shown in Table 5.3. Note that the importance weight for 
each bridge element is calculated based on the cost of replacement and reconstruction for that element in 
relation to the sum of the cost of replacement and reconstruction for all elements, as shown in Table 5.3. 
Additionally, the terminal HI, which represents the minimum acceptable condition for each element, is set 
at 40% for all bridge elements. Based on the collected input data, the HI of each bridge element in the 
case study was predicted for each year over the study period, using a multi-step forecasting method and 
the developed RF models. 
 

Table 5.3  Summary of the case study bridge characteristics 

Element Group 
NBE Element 

Number 
Element Name Unit Quantity 

Existing 
Health 
Index 

Element 
Importance 

Weight 
Deck/Slab 12 Reinforced Concrete Deck SF 12,672 99.97 68.17% 

Superstructure 109 Prestressed Concrete 
Girder/Beam LF 1,584 93.4 20.45% 

Substructure 205 Reinforced Concrete 
Column LF 72 100 0.17% 

Substructure 215 
Reinforced Concrete 

Abutment LF 96 97.92 3.22% 

Substructure 234 
Reinforced Concrete Pier 

Cap LF 48 100 0.62% 

Joint 300 Strip Seal Expansion Joint LF 96 67 0.62% 
Joint 301 Pourable Joint Seal LF 96 33 0.25% 

Bridge Rail 330 Steel Bridge Rail LF 792 99.58 1.70% 

Bridge Rail 331 Reinforced Concrete 
Bridge Rail LF 528 97.99 1.70% 

Wearing Surfaces and 
Protective Coatings 510 Wearing Surfaces SF 9,504 50 3.07% 

Wearing Surfaces and 
Protective Coatings 515 Steel Protective Coating SF 792 98.74 0.03% 

 
The present system is used to maximize average performance of the case study bridge over a 50-year 
study period while complying with annual budgets that ranged from $26,000 to $125,000. The $26,000 
annual budget is the minimum budget to maintain the conditions of the bridge elements above the 
specified terminal health index of 40% during the study period. The case study results demonstrate that 
the system effectively identifies the optimal set of maintenance interventions for all specified annual 
budgets, as shown in Figure 5.2. The results of the optimization model reveal that as the annual budget for 
bridge maintenance increases, the average performance index of the bridge improves. However, as the 
budget increases, the rate at which the performance index improves decreases. This indicates that the 
model has the resources to implement additional maintenance interventions which, although they still 
improve the bridge condition index, have less significant impact. For example, increasing the budget from 
$50,000 to $75,000 results in an 8.17% increase in the average performance index (i.e., 74.87% to 
83.03%), while increasing the budget from $100,000 to $125,000 results in a 5.31% increase (i.e., 91.32% 
to 96.63%), as shown in Figure 5.2. The model is designed to generate diagrams to illustrate the impact of 
different annual budgets on the bridge performance and cumulative maintenance costs over time, as 
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shown in Figure 5.3 and Figure 5.4, respectively. These figures show that the model gradually spends the 
available budgets to prevent the degradation of bridge elements. As the annual budget increases, more 
costly maintenance interventions can be implemented, resulting in a greater impact on the average 
performance index. Conversely, with lower budgets, the model is restricted in scheduling costly 
maintenance interventions, leading to a greater degradation of the performance index, as shown in Figure 
5.3 and Figure 5.4. 
 
The optimization computations were conducted on a personal computer with an Intel Core i7 processor at 
2.3 GHz and 8GB of RAM. The optimization computations for the above annual budgets were executed 
on average in 45 minutes. Based on the optimization model output, for each of the specified budgets, an 
action report is generated in order to provide detailed recommendations for maintenance interventions 
within the specified annual budget. A sample of items in the action report for the annual budget of $75K 
is shown in Table 5.4. 

 

Figure 5.2  Average bridge performance for specified annual budgets ranging from $26K to $150K 
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Figure 5.3  Bridge performance over time under various annual maintenance budgets 

 

 
Figure 5.4  Cumulative maintenance costs over time for various maintenance budgets 
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Table 5.4  Sample of action report for the annual budget of $75K: the initial two maintenance 
interventions and their associated costs 

EN Element Repair Description Unit 

Intervention 1 Intervention 2 

Year 
Quantit

y of 
repair 

Cost 
(USD) Year 

Quantit
y of 

repair 

Cost 
(USD) 

12 
Reinforced 
Concrete 

Deck 
Seal deck overlays SF 7 253 105,600 12 760 316,800 

109 
Prestressed 
Concrete 

Girder/Beam 

Patch or fill any 
cracks or damage to 
the concrete surface. 

LF 1 32 31,680 2 95 95,040 

205 
Reinforced 
Concrete 
Column 

Patch or fill any 
cracks or damage to 
the concrete surface. 

LF 7 3 533 11 1 267 

215 
Reinforced 
Concrete 
Abutment 

Patch or fill any 
cracks or damage to 
the concrete surface. 

LF 23 17 44,928 35 4 9,984 

234 
Reinforced 

Concrete Pier 
Cap 

Patch or fill any 
cracks or damage to 
the concrete surface. 

LF 24 1 960 37 1 960 

300 Strip Seal 
Joint 

Repair or replace the 
sealant in the joint to 

prevent water 
infiltration 

LF 1 12 5,760 2 2 960 

301 Pourable Joint 

Repair or replace the 
sealant in the joint to 

prevent water 
infiltration 

LF 1 31 6,144 6 4 768 

330 Steel Bridge 
Rail 

Repair or 
replacement of 

damaged components 
and tightening or 

replacing loose bolts 

LF 23 63 10,560 37 16 2,640 

331 
Reinforced 
Concrete 

Bridge Rail 

Patch or fill any 
cracks or damage to 
the concrete surface. 

LF 6 21 5,280 23 11 2,640 

510 Wearing 
Surfaces 

Patch or fill any 
cracks or potholes on 

the surface 
SF 3 950 23,760 4 3,231 80,784 

515 
Steel 

Protective 
Coating 

Fill in small areas of 
damage or apply a 
new coat over the 

existing one to extend 
the life of the coating. 

SF 1 32 79 2 174 436 
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5.2 Upgrade And Maintenance Optimization Model for Buildings  

5.2.1 Simulated Highway Rest Area Building 

To evaluate the upgrade and maintenance optimization model, a hypothetical case study was conducted 
using a highway rest area building. Due to the unavailability of data in the local DOT, hypothetical data 
were used for the analysis, which is representative of a real case study presented in Abdallah et al. (2016). 
The assumption is made to ensure that the analysis conducted using the hypothetical data can provide 
valuable insights for real-world applications. The building analyzed has a total area of 3,575 feet and 
approximately 840,000 annual visitors. The rest area building consists of a lobby, women’s bathroom, 
men’s bathroom, mechanical room, storage room, travel information desk, and technician’s office. 
Additionally, the building has a parking lot that accommodates cars and semi-trucks, a large landscaped 
area, and outdoor picnic tables. The equipment and systems that have the highest share of operational 
costs in the building include interior and exterior lighting, HVAC systems, water heaters, hand dryers, 
vending machines, water coolers, personal computers, surveillance systems, water faucets, urinals, and 
toilets. 
 
The input data for this analysis include: (1) building characteristics, such as construction materials, which 
are presented in Table 5.5; (2) specifications, conditions, and count of existing components in all areas of 
the building, as presented in Table 5.6; and (3) billing and escalation rates for electricity, gas, and water, 
as well as the discount rate, which are presented in Table 5.7. Based on the case study presented in 
Abdallah et al. (2015), an OpenStudio energy simulation model is developed to calculate energy 
consumption of cooling and heating systems and water heaters. 
 

Table 5.5  Sample of building characteristics 
Title Description 

Building operation schedule  24 hours 
Allocation of building activities  31.9% lobby, 6.8% office, 13.1% mechanical and electrical room, 26.6% rest 

rooms, 12.2% storage, and 9.4% retail sales. 
Temperature set and airflow  68°F cooling, and 72°F heating, and minimum design flow of 0.5 cfm/ft2. 

Building envelope (roof surfaces)  Wood advanced frame 24” with dark brown shingle roofing and R-19 batt. 
Building envelope (above grade 

walls)  
8” CMU with brick exterior finishing, perlite filling, and R-6 wood furred 

insulation. 
Building infiltration  1.36 ACH for perimeter 

Building interior construction  Lay-in acoustic tile flooring with R-19 batt, wood standard framing with no board 
insulation, and mass interior walls. 

Doors 7’×6’ air-lock entry with single bronze 1/8 in. glass in the north side of the 
building, 7’×6’ door with single 1/8 in. bronze glass in the south side of the 

building, and two 7’×6’ opaque doors with steel hollow core. 
Windows  30% single bronze 1/8 in. glass in north, east, and west sides of the building. 
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Table 5.6  A sample of building input data 

𝑡𝑡 Equipment 
Type 𝑙𝑙 Space 

Existing 
Equipment 

ID 
Existing Component 

Count of 
Equipment  
𝑡𝑡 in space  

𝑙𝑙 

Installation 
Date Condition 

1 Light 
Bulbs  1 

Travel 
Information 

Room 
22 T8 Linear Lamps of 32 Watts 

and 2,655 Lumens 5 2018 N/A 

5 Toilets 7 Women’s 
Restrooms 5 Toilet of 3.5 gallons per flush 17 2018 55 

7 Water 
Heaters 9 Mechanical 

Room 7 
100K BTU natural gas water 

Heater with thermal efficiency 
of 0.8 

1 2018 60 

 
Table 5.7  Building utility and discount rates 

Description Rate 

Average electricity billing rate 0.107 $/kWh 
Average gas billing rate 0.8 $/therms 

Average water billing rate 0.0034 $/Gallons 
Discount rate 2% 

Escalation in electricity rates1 1.2% 
Escalation in natural gas rates2 0.14 % 

Escalation in water rates3 4.1% 
1&2 (EIA 2021) 

 3 (DOE 2019)  

5.2.2 Optimization Results 

Based on the building input data, the model identifies feasible interventions and generates binary decision 
variables for RRU plans of all fixtures and equipment. The optimization model is used to minimize 
EAOMC of the case study building for a 20-year study period while considering various annual operation 
and maintenance budgets that ranged from $60K to $90K. Note that $60K is identified as the lowest 
optimized budget to cover operation and maintenance costs of the building during the study period. 
However, the conventional maintenance (CM) method where fixtures and equipment are replaced with 
similar products at the end of their service lives requires an annual budget of $65K. 

The present model was able to identify the optimal building upgrade and maintenance plans for all the 
specified annual budgets that resulted in substantial savings and reduction in EAOMC compared with the 
CM, as shown in Figure 5.5. To report the value of the present model, the results of the various upgrade 
budgets are compared with the CM, as shown Table 5.8. For example, the model identified an upgrade 
and maintenance plan for an annual budget of $65K, which results in a 31.78% reduction in EAOMC 
compared with the CM, and $220,682 (24%) reduction in cumulative total cost at the end of the study 
period compared with the CM, as shown in Table 5.8. Furthermore, the results of the optimization model 
for the $90K budget are compared with the CM where no optimization is used. The model showed a 
32.59% reduction in EAOMC and $256,785 (29.5%) reduction in cumulative total cost at the end of the 
study period, as shown in Table 5.8. This highlights the importance of the optimization model where 
decision-makers and operators can achieve significant savings on operation and maintenance costs of 
existing buildings with efficient and optimized plans for maintenance and upgrades.    
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Figure 5.5  EAOMC for a study period of 20 years for budgets of $60K to $90K 

Table 5.8  EAOMC and savings for specified annual budgets 

Annual Budgets EAOMC Reduction in EAOMC 
Compared to CM 

Total savings on operational 
and RRU costs at the end of 

the study period (y=20 years) 

CM($65,000) $43,955 NA NA 

$60,000 $30,072 31.58% $208,838 

$65,000 $29,987 31.78% $220,682 

$70,000 $29,827 32.14% $233,793 

$90,000 $29,631 32.59% $256,785 

The model is designed to identify the proper action to replace, repair, or upgrade each fixture and 
equipment and building component during or at the end of their service lives to minimize EAOMC. 
Therefore, the model selects different sets of decisions for repair, replace, or upgrade of each building 
component to comply with the specified annual budget and service life constraints. Consequently, 
different annual budgets result in different total cumulative RRU costs, as shown in Figure 5.6. The 
results indicate an inverse relationship between annual budgets and operational costs, as shown in Figure 
5.7, where higher annual budgets result in lower operational costs. As an annual budget increases, the 
model can prioritize more costly upgrades with greater savings in earlier years. Therefore, higher 
spending on energy- and water-efficient upgrades in initial years results in significant savings on 
operational costs in the long term, as shown in Figure 5.6 and Figure 5.7. For example, the model 
gradually upgraded the building with total cumulative RRU cost of $262K for the annual budget of $90K, 
while the model selected different sets of upgrades with total cumulative RRU cost of $259K for the 
annual budget of $65K. Although the total cumulative RRU costs for annual budgets of $70K, and $90K 
are equivalent, as shown in Figure 5.6, the amount of savings on operational costs are different due to 
different timing of RRU interventions, as shown in Figure 5.7. Specifically, the model achieved savings 
of $390K and $413K on operational costs for annual budgets of $70K and $90K, respectively. 
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The results show that the model gradually upgrades the building with energy- and water-efficient 
components to reduce the operational costs as annual budgets and savings from previous years become 
available. Therefore, higher investments on upgrades in earlier years resulted in lower cumulative 
operation and maintenance costs at the end of the study period, as shown in Figure 5.8. For example, an 
annual budget of $90K results in total cumulative RRU cost of $262K, which is the highest spending on 
upgrade costs, and total cumulative operational cost of $351K, which is the lowest among other specified 
budgets.  
 

 
Figure 5.6  Cumulative RRU costs 

 
Figure 5.7  Cumulative operational costs for various operational budgets 
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Figure 5.8  Cumulative operation and RRU costs 

 
The optimization computations were performed on a personal computer with Intel Core i7, CPU 2.3 GHz 
processor, and 8GB RAM. The optimization computations for the above annual budgets were executed in 
one minute on average. Moreover, the energy simulation for all combinations of HVAC and envelope 
component alternatives were performed using the same personal computer in four hours, as a preparatory 
step before optimization. Based on the optimization model output, an action report is generated to provide 
detailed recommendations for upgrade and maintenance interventions within the specified annual 
operation and maintenance budget.  A sample of items in the action report for the annual operational 
budget of $65K is shown in Table 5.9. For example, the model recommends upgrading the lighting lamps 
at location 𝑙𝑙 = 1 (Travel Information Room) with more efficient alternatives in the first year and replaces 
them again with similar lamps at the end of their service lives in year 6, as shown in Table 5.9. 
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Table 5.9  Example items in an action report for the annual operational budget of $65K 
Component 

Type 𝑙𝑙 Space Existing 
Component 

Interventions 

Year Action Year Action 

Lighting 
Lamps 1 

Travel 
Information 

Room 

T8 linear lamps of 
32 watts and 2,655 

lumens 
1 

Upgrade item: 32-watt 
equivalent T8 linear LED of 
12 watts and 2,790 lumens 

6 
Replace item: 32-watt 

equivalent T8 linear LED of 
12 watts and 2,790 lumens 

Lighting 
Lamps 2 Lobby 

T12 lamps of 40 
watts and 3,330 

lumens 
1 Upgrade item: T12 lamps of 

30 watts and 3,213 lumens 6 Replace item: T12 lamps of 30 
watts and 3,213 lumens 

Toilets 7 Women’s 
Restrooms 

Toilet of 3.5 
gallons per flush  

1 
Upgrade item: 

Electronic flushing toilet with 
1.1 gallons per flush 

3 Repair item: Repair the 
existing toilets 

Urinals 8 Men’s 
Restrooms 

Urinal of 1.6 
gallons per flush  

1 
Upgrade item: 

Electronic flush urinal of 
0.125 gallons per flush 

3 Repair item: Repair the 
existing urinals 

Water 
Heaters 9 Mechanical 

Room 

100K BTU natural 
gas water heater 

with thermal 
efficiency of 0.8 

2 
100K BTU natural gas water 
heater with thermal efficiency 

of 0.85 
5 Repair item: Repair the 

existing water heater 

HVAC 
System - N/A 

Rooftop air 
conditioning units 
with EER of 10.3 

4 Rooftop air conditioning units 
with EER of 15.2 - - 

PV systems - Roof No PV systems 6 
Upgrade item: Install PV 
system with capacity of 

100KW 
- - 

5.3 Summary and Conclusions  

Maintenance interventions for infrastructure and buildings are essential for their long-term sustainability 
and performance. The selection of optimal maintenance interventions and their timing is crucial for 
ensuring that they continue to function effectively while minimizing maintenance costs. This research 
presents the development of two novel systems for optimizing maintenance interventions for bridges and 
buildings. 
 
The first system is designed to be capable of predicting the condition of concrete bridge elements to 
identify optimal selection of maintenance interventions and their timing to maximize bridge performance 
while complying with available annual budgets. The system consists of (1) machine learning (ML) 
models to predict the condition of concrete bridge elements, and (2) a bridge maintenance optimization 
model to identify optimal selection of maintenance interventions and their timing. The bridge element 
deterioration forecasting models are developed in four main steps: data preprocessing where the National 
Bridge Inventory (NBI) and the National Bridge Elements (NBE) data are concatenated and prepared to 
be used for ML model development; feature selection where factors affecting deterioration of bridge 
elements are identified; model development where four different ML models are trained and tested using 
the selected features from NBI data; and predictive performance evaluation where the predicted data from 
the test dataset are compared with reported data. The optimization model is developed in three main steps 
that focus on identifying model decision variables, formulating objective function and constraints, and 
implementing optimization computations. The optimization model is designed to evaluate the cost-
effectiveness of maintenance interventions based on the performance level of bridge elements, as 
measured by their health index, and the associated maintenance costs over the specified study period. ML 
methods were selected to predict deterioration of bridge elements due to their capability of predicting 
non-stationary and nonlinear time series data with high accuracy. Four machine learning methods, 
decision tree (DT), random forest (RF), gradient boosting (GB), and support vector machines (SVM), 
were investigated using the NBI and NBE databases to identify the best method for predicting bridge 
element conditions. Results from the predictive performance evaluation indicated that while the values of 
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the predictive performance metrics varied for different elements, a similar ranking of models was 
observed. Based on the predictive performance metrics, the RF method had the highest performance in 
terms of mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), 
and coefficient of determination (R^2 score) metrics for all elements. The computations of the 
optimization model are performed using binary linear programming due to its capability of identifying 
global optimum solutions in a short computational time. The case study results showed that the developed 
model identified optimal maintenance interventions for all the specified annual budgets over a 50-year 
study period. The main contributions of this system to the body of knowledge are: (1) introducing an 
innovative system that integrates ML techniques and linear programming for predicting bridge element 
condition and optimizing maintenance interventions; (2) modeling and predicting the deterioration of 
bridge elements based on NBE’s health index metric; and (3) generating long-term maintenance plans that 
optimize bridge performance while complying with annual budget constraints. The optimization model 
provides unique and practical capabilities that enable decision-makers to identify an optimal schedule of 
bridge maintenance interventions based on available budgets. 
 
The second system is designed to be capable of optimizing the selection of upgrade and maintenance 
interventions for existing buildings to minimize their equivalent annual operation and maintenance costs 
(EAOMC) while complying with specified annual budgets and building operational performance 
constraints. The optimization model is developed in three main phases: (1) identifying model decision 
variables, formulating objective function and optimization constraints; (2) implementing the model 
computations using binary linear programming; and (3) analyzing and refining the performance of the 
optimization model using a case study of a university building. In the formulation phase, the decision 
variables, objective function, and constraints are identified. The decision variables of the optimization 
model are designed to represent all feasible plans for repairing, replacing, and upgrading (RRU) building 
components for a number of years in a study period. The model is integrated with a set of constraints to 
comply with the annual operation and maintenance budget, component service lives, operational 
performance, and available area for installing PV systems. The model implementation phase is designed 
to specify the model input and output data and execute model computations efficiently. The computations 
of the present model are performed using binary linear programming due to its capability of identifying 
global optimum solutions in a short computational time. The present model is integrated with expandable 
databases of building products to facilitate the selection of building components in the input data and to 
identify the product replacement and upgrade alternatives. A case study of a rest area is analyzed to 
evaluate the performance of the developed model and illustrate its capabilities. The present model 
identified optimum building upgrade and maintenance plans for all the specified annual budgets. For the 
generated solutions, the model provided detailed recommendations for upgrade and maintenance 
interventions within the specified annual operation and maintenance budget. The primary contributions 
that this model adds to the body of knowledge are (1) a new computationally efficient and simulation-
based methodology to identify optimal selection of building upgrade and maintenance interventions to 
minimize EAOMC within the available budget, and (2) a new approach for integrating maintenance and 
upgrade interventions to maximize economic benefits from building operation by reducing operational 
and maintenance costs. The new capabilities of the model will support decision-makers in maximizing 
their economic benefits by reducing buildings’ energy and water consumption and identifying optimal 
schedule of upgrade and maintenance interventions with respect to available budgets. 
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