

Bismarck Mandan MPO 2015 TRAVEL DEMAND MODEL UPDATE

FINAL REPORT

To the Bismarck Mandan MPO

February 2019

Diomo Motuba, PhD & Muhammad Asif Khan (PhD Candidate) Advanced Traffic Analysis Center Upper Great Plains Transportation Institute North Dakota State University Fargo, North Dakota 58102

TABLE OF CONTENTS

1.	Introduction
2.	Improvements to the 2015 TDM
2.1. C	Prigin Destination Data Obtained from Airsage6
2.1.1.	Internal-Internal OD Trip Summary7
2.1.2.	Internal-External/External-Internal Origin Destination Data
2.1.3.	External-External OD Data9
2.1.4.	Use of Airsage OD Data in the TDM 10
2.1.5.	Shortcomings of the OD Data11
2.2. F	reight Analysis Framework Data11
3.	Capacity Calculations
3.1. C	apacity Calculations for Signalized intersections
3.1.1.	Step 1: Develop Lane Groups for each Link16
3.1.2.	Step 2: Determining saturation flow rate (Si) for each lane group:
3.1.3.	Step 3: Approach Capacity Calculation
3.2. C	apacities for Stop Control Intersections
3.2.1.	Step 1: Calculate the Potential Capacity for each Turning Movement
3.2.2.	Step 2: Determine Potential Approach Capacity for Shared Lanes
3.2.3.	Step 3: Calculate Approach Capacity for each Lane Group Type 22
3.3. F	reeway Capacity
3.3.1.	Step 1: Calculate Free Flow Speed 22
3.3.2.	Step 2: Calculate Base Freeway Capacity
3.4. R	amp Capacity Calculations
3.4.1.	Step 1: Calculate Free Flow Speed 24
3.4.2.	Step 2: Calculate Maximum Saturation Flow Capacity
4.	Model Input Data
4.1. T	ransportation Network Data
4.1.1.	Distribution of Modeled Network by Functional Classifications
4.2. S	ocioeconomic Data
	Great Plains Transportation Institute 2015 Bismarck Mandan TDM Update rt: February, 2019

	4.2.1	1. TAZ Geography files:	
	4.2.2	2. Socioeconomic Data TAZ Attributes	29
5.		TRIP GENERATION	
5.	1.	Internal-Internal Passenger Vehicle Trip Productions and Attractions	
	5.1.1	I. Trip Productions	
	5.1.2	2. Trip Attractions	
5.	.2.	Freight Data	
6.		TRIP DISTRIBUTION	
7.		1. TRIP ASSIGNMENT	
8.		validation and calibration	
8.	1.	Trip Length Frequency Calibration and Validation	
8.	.2.	Vehicle Miles Traveled (VMT) Calibration and Validation	40
8.	.3.	Modeled ADT Comparison to Observed ADT	41
8.	.4.	Root Mean Square Error and Percent Root Mean Squared Error	
8.	.5.	Scatter Plots, R Squares of Model and Observed Traffic	44
8.	.6.	Link Travel Time Validation	
8.	.7.	Screen Line Comparisons	45
9.		Conclusions	
10.		appendix	

LIST OF FIGURES

Figure 1 B-M TDM Calibration Flow Chart	5
Figure 2 OD TAZs	6
Figure 3 Capacity Comparisons to Bismarck Mandan MPO 2010 Base Year Model	. 16
Figure 4 B-M 2015 Model Network	27
Figure 5 Intersection Data Used in Mode	28
Figure 6 Calibration Flow Chart	37
Figure 7 Friction Factors	39
Figure 8 Comparison of Observed to Model Trip Length Frequency	40
Figure 9 Scatter Plot of Modeled and Observed ADTS	44

LIST OF TABLES

Table 1 Summary of Internal-Internal OD Data from Airsage	8
Table 2 IE and EI Trips from OD Data for the B-M MPO Area	9
Table 3 EE Trips from OD Data	. 10
Table 4 Summary of Capacity Calculations for MPO Planning Models	. 13
Table 5 Lane Group Classification (Linkgroup 1)	. 17
Table 6 Default values for calculating potential capacities (Cp,x) of stop sign-controlled	
highways	. 21
Table 7 Default Values for Conflicting Flow Rates	. 21
Table 8. Stop Sign Control Intersection Capacity Equations for Different Lane Groups	. 22
Table 9 Adjustment Factors Lane Width	. 23
Table 10 Right Shoulder Clearance Adjustment Factor	. 23
Table 11 Adjustments for Interchange Density	. 24
Table 12 Adjustments for Number of Lanes	. 24
Table 13 Centerline Miles Distribution by Functional Classification	. 26
Table 14 Internal-Internal Passenger Trip Generation Equations	. 31
Table 15 Trip Attraction Rates	. 32
Table 16 School Trip Attraction Rates	. 32
Table 17 Freight Trip Productions and Attractions (IE/EI)	. 33
Table 18 Modeled VMTs compared to Observed VMTs by Functional Class	. 41
Table 19 Modeled VMTs compared to Observed VMTs by Volume Range	.41
Table 20 Comparison of Modeled and Observed ADTS by Functional Classification	. 42
Table 21 Comparison of Modeled and Observed ADT by Volume Range	. 42
Table 22 RMSE Comparison by Volume Range	. 43
Table 23 Travel Time Validation	. 45
Table 24 Screen Line Comparison	. 45
Table 25 Calculated Capacities for Signalized Intersections for Different Functional	
Classifications	. 47
Table 26 Calculated Capacities for Ramps	. 56

1. INTRODUCTION

The Bismarck Mandan (The B-M MPO) Travel Demand Model (TDM) is updated every five years to reflect new ground truths/data and the advancements in the state-of-the-art in transportation modeling techniques and methods. The current update reflects base year 2015 data. The model is a four-step TDM including trip generations, trip distributions, modal split and trip assignment. The update process involves calibrating the model input parameters and validating the model output with ground truths. The model calibration is a cyclical process as shown in Figure 1.

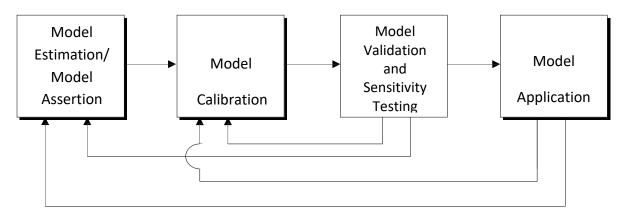
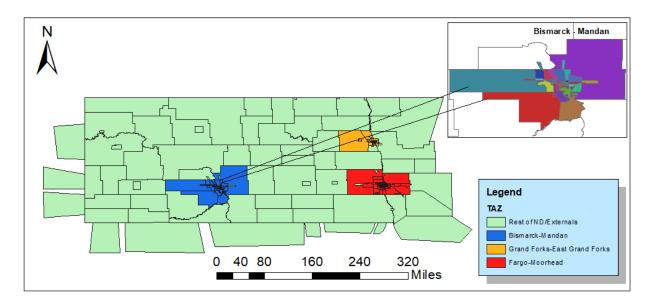


Figure 1 B-M TDM Calibration Flow Chart


The rest of this document describes the model update process including the data, methods and models that were used to update the model. Chapter 2 discusses the improvements made to the 2015 TDM; Chapter 3 discusses the capacity calculation methodology; Chapter 4 discusses the input data used in the model; Chapter 5 summarizes the trip generation models and methods; Chapter 6 discusses the trip distribution step; Chapter 7 discusses the trip assignment step; Chapter 8 discusses the model calibration, validation and output.

2. IMPROVEMENTS TO THE 2015 TDM

For the 2015 base year model, several updates were made to the model to reflect the availability of new and improved data, new and advanced methods in modeling software and the inclusion of long-haul freight movements as part of the model. New data that was used for 2015 model update included: Origin Destination Data (Obtained from Airsage), the traffic analysis tool data, incorporation of truck counts and FAF data to model freights.

2.1.Origin Destination Data Obtained from Airsage

Origin-destination (OD) data were obtained from a commercial vendor Airsage. Airsage is a company that aggregates cell phone cellular-signal data points anonymously in partnership with the nation's largest wireless carriers. Origin Destination data were collected for the entire North Dakota and external locations rather than for the B-M MPO area only. Overall, a total of 301 OD TAZs were used. OD TAZs are defined as TAZS that were used in the OD survey data collection. Of the 301 OD TAZs, 52 were TAZs internal to the B-M MPO area. The internal OD TAZs were an aggregation of the TAZs in the B-M TDM which had a total of 406 TAZs. Figure 2 shows the overall OD TAZs and the B-M MPO TAZs geographies.

Different datasets were provided by Airsage reflecting temporal, socioeconomic and weekday/weekend data and included the following tables:

- 1. Average Weekday 24 Hour trip matrix reflecting the total 24-hour Origin-Destination by trip purposes (HBW, HBO, NHB). Three Matrices were provided for different socioeconomic variables including age (5 year cohorts), income (\$10,000 increments), and vehicle attributes (0->5 for rent/owner households).
- 2. Average Weekday Peak Hour matrices (7:00AM-10:00AM, 10:00AM-4:00PM, 4:00PM-7:00PM) by trip purposes. Three Matrices were provided for different socioeconomic

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019

variables including age (5 year cohorts), income (\$10,000 increments), and vehicle attributes (0->5 for rent/owner households).

- 3. Weekend matrices for each of the weekends of October 2015 by trip purposes (HBW, HBO, NHB). Three Matrices were provided for different socioeconomic variables including age (5 year cohorts), income (\$10,000 increments), and vehicle attributes (0->5 for rent/owner households) for each weekend.
- 4. Long Distance ODs, showing external-external trips for the full day for both weekday averages and each weekend for HBW, HBO and NBH trips. No socioeconomic data were provided for these matrices.

The OD data is very useful in differentiating trips that are internal to the B-M MPO area: Internal-Internal (II) trips, trips that pass through the B-M MPO area: External-External (E-E) trips, and trips that start/end in the MPO area with the other end outside the MPO area: Internal-External/External/Internal (IE/EI) trips.

2.1.1. Internal-Internal OD Trip Summary

Table 1 shows the trip purposes by time of day, Peak AM, Peak Afternoon, Peak PM and Night trips. For HBW trips for the B-M MPO TAZs, night period had the highest proportion of trips (29%) followed by the late-morning to early-evening period (28%), AM peak (25%) and the PM Peak period (17%). The late-morning to early-evening period and night period had the highest proportion of HBO trips (32%), followed by the PM peak (20%) and AM Peak (16%). This is expected and possibly because fewer non-work trips originate from homes during the morning peak period. Trip activity locations such as malls, schools, walk-in hospitals, banks, typically open after 8:00AM. For NHB trips, the late-morning to early-evening period again has the highest proportion of trips (42%), followed by the PM Peak (22%), night period (20%) and the AM peak (16%).

The % overall column reflects the percentage of trips that had at least one end in the Bismarck Mandan MPO area with respect to the entire dataset. It can be seen that 11% of HBW, 15% of HBO, and 15% of NHB, of total trips in the overall North Dakota data had trip ends in the B-M MPO area.

Bismarck-Mandan MPO TAZ OD Trips						
7-10AM 10AM-4PM 4-7PM Night Total % of Overall						
HBW	5,099	5,842	3,531	6,054	20,526	11%
HBO	18,973	37,378	23,376	36,762	116,489	15%
NHB	26,000	69,064	37,108	33,969	166,141	15%
Total	50,072	112,284	64,015	76,785	303,156	15%
Proportions by T	rip Purpos	se and Time of	Day, B-N	M MPO 7	TAZs Only	ý
	7-10AM	10AM-4PM	4-7PM	Night	Total	% of Overall
HBW	25%	28%	17%	29%	100%	11%
НВО	16%	32%	20%	32%	100%	15%
NHB	16%	42%	22%	20%	100%	15%
NHCRP 718 Time-of-day Distributions by Purpose						
7-10AM 10AM-4PM 4-7PM Night Total						
HBW	25%	22%	26%	27%	100%	
HBO	15%	38%	26%	21%	100%	
NHB	15%	53%	21%	11%	100%	

Table 1 Summary of Internal-Internal OD Data from Airsage

The data were further disaggregated to reflect the different proportions of trips by purpose and type for different external locations. The external locations were distinguished as North, South, East and West with Interstate 94 and U.S. Highway 83 the main highways trips used for entry/exit to the B-M MPO area.

2.1.2. Internal-External/External-Internal Origin Destination Data

Table 2 shows the IE and EI trip data and the proportions of IE/EI trips to the total trips for each trip purpose and time period. The table shows OD trips that had at least one trip end in the study area. Overall, IE/EI trips made up 9% of the total trips for the B-M MPO OD study area. For HBW trip purposes, the proportion of EI/IE is 7% of the total trips and ranged from 6% to 9% for the different time periods. For HBO trips, the IE/EI made up 8% of total trips and ranged from 7% to 9% for the different time periods. The NHB trips for IE/EI where 11% of the total B-M NHB trips and ranged from 9% to 12% for the different time periods.

	Total IE Trips					
	7-10AM	10AM-4PM	4-7PM	Night	Total	
HBW	684	748	567	1,252	3,251	
HBO	3,458	5,559	3,429	7,316	19,762	
NHB	7,351	15,513	7,706	8,560	39,130	
Total	11,493	21,820	11,702	17,128	62,143	
	Percenta	age of IE Trips to Tota	al Trips for B-M	Data		
	7-10AM	10AM-4PM	4-7PM	Night	Total	
HBW	6%	6%	7%	9%	7%	
HBO	8%	7%	7%	9%	8%	
NHB	12%	10%	9%	11%	11%	
Total	10%	9%	8%	10%	9%	

Table 2 IE and EI Trips from OD Data for the B-M MPO Area

2.1.3. External-External OD Data

External-External (EE) OD data shows the trips that pass through the B-M MPO area without stopping. Transient locations were not included in the OD dataset provided by Airsage which would have simplified the task of obtaining EE trips. The data itself does not inform us if a trip between two OD pairs possibly passed through the B-M MPO area. The implication was that EE data had to be estimated using an algorithm that took into account the possibility that trips between OD pairs passed through the BM MPO area. The methodology developed incorporated the use of real time travel data between OD pairs and was developed using an online mapping application APIs. The method assumed that trips between OD pairs will use the shortest travel time path between the OD pairs. The methodology to estimate EE OD pairs that passed through the B-M MPO is as follows:

1. Select all OD pairs that are not part of the internal B-M MPO OD TAZs i.e. not part of the 52 B-M OD TAZs. Remaining 249 OD TAZs fit this category.

2. Calculate average shortest travel path between all OD pairs using API algorithm developed for online mapping application for each time period.

3. Evaluate whether any portion of the route between each OD pair included a spatial location point within the B-M MPO area (longitude/latitude).

4. If yes to 3, trips between those OD pairs were considered as EE trips for the B-M MPO area.

Table 3 shows the percentages of EE trips that pass through the B-M MPO area by trip type and by trip purpose. Table 3 also shows the proportion of each EE trip type as the overall proportion of EE and EI trips. Overall, EE trips made up about 3% of total EE and EI/IE trips. This was a lot lower than the typically used 10-12% through trip percentages.

The percentage of EE only trips ranged from 18% for the AM Peak period to 37% for the night period. For HBW, the majority of trips occurred during the Night period (46%) with the

NDSU Upper Great Plains Transportation Institute 202 Final Report: February, 2019

least amount of trips occurring during the AM Peak period (17%). This could be because this time period includes the early morning (6:00AM to 7:00 AM) and late evening (7:00PM to 9:00PM) periods. Trips passing through the B-M MPO area for work may typically leave early and arrive later due to comparatively longer travel times. For HBO trips, 49% of trips occurring at night and 16% of trips occurring during the AM Peak period. For NHB trips, the late-morning to early-afternoon period had the highest percentage of trips (35%) followed by the night period (31%), Peak AM (19%) and PM peak (14%).

EE Trips passing through B-M MPO					
	7-10AM	10AM-4PM	4-7PM	Night	Total
HBW	129	147	140	356	772
НВО	1016	1296	835	3031	6178
NHB	2384	4,315	1780	3811	12290
Total	3,529	5,758	2,755	7,198	19,240
Percentage of EE Trips p	assing thre	ough B-M MP	0		
	7-10AM	10AM-4PM	4-7PM	Night	Total
HBW	17%	19%	18%	46%	100%
НВО	16%	21%	14%	49%	100%
NHB	19%	35%	14%	31%	100%
Total	18%	30%	14%	37%	100%
Percentage of EE Trip	os to Total	EE/EI Trips			
	7-10AM	10AM-4PM	4-7PM	Night	Total
HBW	1%	1%	2%	3%	2%
НВО	2%	2%	2%	4%	2%
NHB	4%	3%	2%	5%	3%
Total	3%	2%	2%	4%	3%

2.1.4. Use of Airsage OD Data in the TDM

The OD data were used to calibrate and validate the trip generation and trip distribution steps of the model. Prior models could not distinguish between EE trips for HBW and HBO trips for the AM Peak period for example. Ultimately, it leads to more precise and accurate models.

2.1.4.1. Trip Generation

For trip generation, the data were used primarily to disaggregate daily trips into peak and off peak periods for the different trip purposes and for different trip types (II/IE/EI and EE trips). This created a more refined and more accurate output that was used for later parts of the model. The refinement greatly enhanced the ability of the model to replicate ground truths.

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019

2.1.4.2. Trip Distribution

Trip distribution assigns trips generated in the trip generation step between origin and destination pairs. The typical output of the trip distribution step in TDMs is a matrix showing the origins and destination of each trip. For the B-M MPO TDM, the gravity model was used to distribute trips. The gravity model uses the trip generation outputs (production and attractions by trip purpose for each zone), a measure of travel impedance between each zonal pair (travel time), and socioeconomic/area characteristic variables ("K-factor") variables as input. The K-factor is used to account for the effects of variables other than travel impedance in the model. The OD data were used to develop K-factor matrices imputed in the trip gravity model that were used for distributing trips for each time period and purpose.

2.1.5. Shortcomings of the OD Data

Although the OD data provides unique opportunities to improve on the TDM, there were some deficiencies in the data.

- 1. The data did not show transient locations between Origins and Destinations. Paths between OD pairs can be estimated using network data.
- 2. The data does not include all cell phone networks and could suffer from cell phone provide biases. For example, low income earners might use different networks from the major networks for cost savings.
- 3. The raw data collected is anonymous and does not contain the demographic data that is provided with the dataset. The provider uses an algorithm to create the profile for average users (age, gender etc) based on their socioeconomic data. We cannot verify the veracity of the algorithm or the socioeconomic data that was used for this process.
- 4. Truck Data is not included in the dataset.

2.2.Freight Analysis Framework Data

The Freight Analysis Framework (FAF) data integrates data from various sources to create a comprehensive freight movement data among states and major metropolitan areas for all transportation modes. The data provides estimates for tonnage (thousand tons) and value (million dollars) by regions of origins and destinations, commodity type, and mode. Data are available for the 2012 base years, years 2012-2015, and forecasts from 2020 to 2045 in five-year increments.

The FAF data for North Dakota is aggregated for the entire state. A methodology was necessary to disaggregate the data to the MPO level. Data for Bismarck Mandan came from the North Dakota FAF aggregate data. A regression model was developed to disaggregate the statewide data to the MPO level. The model used the employments as the explanatory variable. Overall, the model had very good fit with R-square ranges from 65-95 %.

The output of the regression models were the tonnage of freight produced and attracted to each of the Cities in the MPO (Bismarck and Mandan respectively). The Tonnage was then distributed to each TAZ proportionally based on the employment for that TAZ. Tonnages were then converted to truck trips using the commodity type characteristics (typical weight and size).

3. CAPACITY CALCULATIONS

Capacities play a critical role in TDM as they are not only used to measure the Level of Service but are also critical in the assignment step. Traffic is assigned based on the saturation (Volume to Capacity) of each link, which will result in traffic being moved to other links as this value increases. The Transportation Research Board 2010 defined capacity as follows: "The capacity of a system element is the maximum sustainable hourly flow rate which persons or vehicles reasonably can be expected to traverse a point or a uniform section of a lane or roadway during a given time period under prevailing roadway, environmental, traffic, and control conditions. Capacity analysis examine roadway elements under uniform traffic, roadway, and control conditions."

NCHRP 716 defined on the other hand "Capacity" in a traffic engineering sense is not necessarily the same as the capacity variable used in travel demand model networks. In early travel models, the capacity variable used in such volume-delay functions as the BPR formula represented the volume at Level of Service (LOS) C; whereas, in traffic engineering, the term "capacity" traditionally referred to the volume at LOS E."

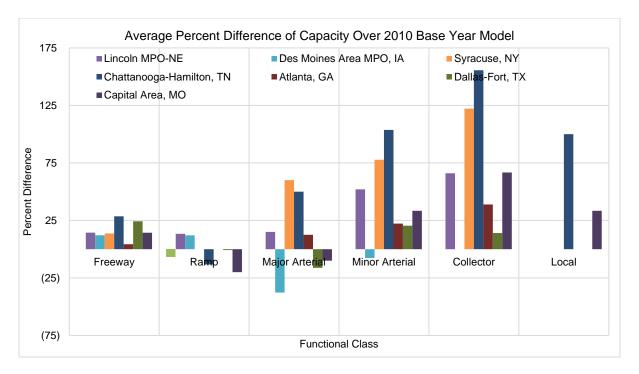
Link capacities are a function of the number of lanes on a link; however, lane capacities can also be specified by facility and area type combinations. Several factors are typically used to account for the variation in per-lane capacity in a highway network, including:

- Lane and shoulder widths;
- Peak-hour factors;
- Transit stops;
- Percentage of trucks
- Median treatments (raised, two-way left turn, absent, etc.);
- Access control;
- Type of intersection control;
- Provision of turning lanes at intersections and the amount of turning traffic; and
- Signal timing and phasing at signalized intersections.

Some networks combine link capacity and node capacity to better define the characteristics of a link (Kurth et al., 1996). This approach allows for a more refined definition of capacity and speed by direction on each link based on the characteristics of the intersection being approached.

To update the model capacity calculations, first a literature review was performed among similar type of MPOs outside of North Dakota (Lincoln-NE, Des Moines Area-IA, Syracuse Metropolitan Transportation Council-NY, Chattanooga-Hamilton County Regional Planning Agency-TN, Knoxville Regional Transportation Planning Organization-TN, Tulare County Associations of Governments-CA); larger MPOs than FM Metro COG (Atlanta Regional Commission-GA, Dallas-Fort Worth-TX, Chicago Metropolitan Agency for Planning-IL, Capital Area-MO). The assumptions of similar MPOs or larger MPOs are came from the population's threshold value defined by NCHRP 716. Table 4 summarizes the literature review used in different MPO planning models for capacity calculations.

Table 4 Summary of Capacity Calculations for MPO Planning Models


Lincoln MPO-NE, 2006	For the Lincoln MPO model, capacity at Level of Service (LOS) C was used as the threshold capacity. Highway Capacity Manual (HCM) 2000 procedures were used for estimating the capacity for each combination of functional class and area type. First, peak hour lane capacity was calculated after the effects of percent green time, and peak hour factor. Second, the 24 hour lane capacity was calculated using peak hour lane capacity and percent of traffic in the peak hour. Finally, threshold capacity at LOS C was assumed to be 75% of the 24 hour lane capacity.
	Reference: LIMA & Associates, 2006 http://www.princeton.edu/~alaink/Orf467F12/LincolnTravelDemandModel.pdf
VDOT, 2014	For all model regions, it is acceptable practice and recommended practice to use the most recent version Highway Capacity Manual (HCM) as the basis for roadway capacities. It is not acceptable to use older versions of the HCM or arbitrary figures for roadway capacities. Based on functional class and land use/area type Tabulation process Reference:
	http://www.virginiadot.org/projects/resources/vtm/vtm_policy_manual.pdf
ODOT, 1995	The procedure used to estimate free flow speed and capacity is a detailed methodology that utilizes the maximum amount of information from the network and "connects" this data with information from the Highway Capacity Manual.
	http://www.oregon.gov/ODOT/TD/TP/docs/reports/guidex.pdf
Memphis MPO-TN	Hourly capacities were developed for the Memphis model in order to use collected street data. This provides the most accurate representation of actual capacity (levels of service A through E) on an individual link. These capacities — detailed in the Technical Memorandum #8(b) – Capacity Development — are implemented using an equation which takes into account functional classification, speed limit, lanes, signal density, median treatment, area type, average lane width, and average shoulder width. The capacity equations are built into the model process as a TransCAD lookup table, so modifications to network attributes automatically update the capacity in subsequent runs Since the model is based on four multi-hour time periods, a conversion factor must be used to create a time period capacity for each of the four time periods. The capacity factors below are based on hourly traffic count data and the Memphis household travel survey http://www.memphismpo.org/sites/default/files/public/documents/lttp/appendix-g-travel-demand-model.pdf
GDOT, 2013	Facility type and area type are used in combination to determine free-flow speeds and capacities. Link capacities for the model network are obtained from a lookup table of per-lane hourly capacities based on facility type and area type. The final link capacity is calculated by multiplying the hourly capacity per lane by the number of lanes, which is automatically added to the links during the model application. <u>http://www.dot.ga.gov/BuildSmart/Programs/Documents/TravelDemandModel/GDOT%20Model%20Users%20Gude_050813.pdf</u>
MassDOT, 2013	The coding of the EMME/2 highway network basically follows the hierarchy of the functional classification system. Expressways, other than those passing through denser urban areas, are generally coded for 60 mph speeds and hourly capacity per lane of 1,950. Higher-level arterials are coded for speeds ranging from 45 to 50 mph and corresponding capacities of 1,050 to 1,100. Lower-level arterials and major collectors range from 35 mph to 40 mph, with capacities of 950 to 1,000. Minor collectors and local streets that are not in urban centers
	Great Plains Transportation Institute 2015 Pismarck Mandan TDM Undate

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019

	range from 23 mph to 30 mph, with capacity generally at 800. Streets in urban centers can have substantially lower speeds and capacities.
	https://www.massdot.state.ma.us/theurbanring/downloads/CTPS_Travel_Demand_Modeling_Methodology.pd f
Syracuse Metropolita n Transportati on Council, NY, 2012	The speed and capacity values are stored in lookup tables and automatically imported to the network each time the model runs. The main benefits of importing these data from a lookup table, as opposed to maintaining an explicit speed and capacity for every link within the highway network, are that the user has less data to manage and can easily quote values. However, there are some links in the SMTC network that warrant special attention because their actual speed or capacity is substantially different from what the lookup tables say. Therefore, the SMTC model also supports the ability to code a speed or capacity for each link by entering a value into the "TOTAL_HCAP_FIXED" or "SPEED_FIXED" fields on the network
	http://www.thei81challenge.org/cm/ResourceFiles/resources/SMTC%20Model%20Version%203.023%20Doc umentation.pdf
Atlanta Regional Commissio n (ARC), GA, 2011	By area type and facility type Tabulation method 20 facility type and 7 area type Total link capacity (1Hr- LOS E) <u>http://www.atlantaregional.com/transportation/travel-demand-model</u>
Capital Area MPO (CAMPO)- MO, 2013	The model computes link capacities at run time. Capacities are initially based on functional class and number of lanes, adjusted based on directionality, median type, and roadway slope. Capacity is expressed in terms of vehicles per day for each link by direction. http://www.jeffersoncitymo.gov/11Jan2013CAMPOTDMDocumentation.pdf
Champaign- Urbana Urbanized Area Transportati on Study (CUUATS), IL	The daily capacity for each link in the Champaign County model network was calculated based on its facility type and area type. If a Two-Way Left Turn Lane (TWLTL) was present, the link capacity was increased by 30%. The lookup table was included in the model script to uniformly assign the capacity on the model network. The centroid connectors have high capacity and very low speed (15mph).
Chattanooa ga- Hamilton County Regional Planning Agency, TN, 2013	Using the collected street data, the proposed capacity calculation for Chattanooga model will be implemented using an equation which takes into account data such as functional classification, speed limit, lanes, median treatment, area type, average lane width, and average shoulder width. Traffic signal delays and impact of steep grades may also be considered. The equations were originally developed using the Highway Capacity Manual (HCM) and analysis performed by the Indiana Department of Transportation in 1997 for the Indiana State Highway Congestion Analysis Plan. KHA successfully applied this method in other urban area models, in conjunction with analysis performed using North Carolina DOT's Level of Service (LOS) software. http://www.chcrpa.org/2040RTP/2040RTP_Draft_Plan/Volume_III_Travel_Demand_Model.pdf
Dallas-Fort Worth (DF): North Centeral Texas COG, TX, 2009	Hourly Capacity Per Lane (Divided or One-Way Roads) – The hourly capacity per lane for divided roads is given by area type and functional class. AMFactor, PMFactor, OPFactor – These factors are used in the conversion of capacity from hourly to time period. Factors are defined by functional class 1-8 http://www.nctcog.org/trans/modeling/documentation/DFWRTMModelDescription.pdf
San Diego Association of Government s, CA, 2011	Two capacities are calculated for each direction of a hhghway link: 1. Intersection and mid-link Hourly basis Time category Factored Future ramp metering improved the capacity grow in 10 percent . See the equations <u>http://www.sandag.org/uploads/publicationid/publicationid_1624_13779.pdf</u>
Chicago Metropolita n Agency for Planning, IL, 2014	Zonal capacity system Capacity represented within the link travel time function is approximately the service volume at level of service C. It is calculated as 75 percent of the level of service E time period link capacity. Note that link capacity is calculated by multiplying the hourly lane capacity by the number of lanes and the number of hours in the assignment time period

Omaha- Council Bluffs Metropolita n Area Planning Agency (MAPA), NE, 2010	The daily capacity is based on the hourly ultimate capacity, that is, the point at which the Level of Service (LOS) changes from an "E" to an "F" as defined by the Highway Capacity Manual. To support the daily model, the hourly capacity is multiplied by a factor of 10, which represents a typical ratio of peak hour to daily traffic. Capacity varies by functional class, presence of turn lanes, the number of lanes, and whether the road is divided or undivided. The capacities are based on those used in Des Moines, Iowa. The capacities vary by side friction to take into account differences in driveway density. MAPA is currently comparing the capacities with other sources such as the capacity tables developed by the Florida DOT. The model does not include intersection delay separately from link delay. MAPA has attempted to represent intersection delay using downward adjustments to free flow speeds https://www.fhwa.dot.gov/planning/tmip/resources/peer-review_program/mapa/mapa_report.pdf
Des Moines	Daily directional capacity of a link
Area MPO,	Divided or undivided
IA, 2006	Number of lanes Access condition
	Facility coding
	http://www.ctre.iastate.edu/educweb/ce451/LABS/Lab%2012/DSM_Documentation.pdf
KYOVA	Capacity based on area and functional class
Interstate	Tabulation and look up method
Planning	http://www.kyovaipc.org/2040MTP/documents/KYOVA2040_ModelDocumentation_121213_withFigures.pdf
Commissio	
n, WV,	
2013 Knoxville	Peak hour capacities of the roadway network were estimated using Highway Capacity Manual 2000
Regional	procedures, which results in much more precise estimates of capacity verses traditional methods used in
Transportati	models that entail using a lookup table based on functional class and area type.
on Planning	http://www.knoxtrans.org/plans/mobilityplan/cndetern.pdf
Organizatio	
n, TN, 2010	
Tulare	Link capacity is defined as the number of vehicles that can pass a point on a roadway at free-flow speed in an
County	hour. One important reason for using link capacity as a model input is for congestion impact; which can be
Association	estimated as the additional vehicle -hours of delay based on the 2000 Highway Capacity Manual (2000 HCM).
of	The capacity assumption used in the TCAG model of each road segment in the network is based on the terrain,
Government s, CA, 2015	facility type, and area type, which is consistent with the methodology suggested in the 2000 HCM http://www.arb.ca.gov/cc/sb375/tcag_scs_staff_report_final.pdf
s, CA, 2015	http://www.aru.ca.gov/cc/sus/j/cag_scs_stan_report_final.put

Figure 3 shows the comparison of the base 2010 B-M MPO planning model capacity calculations to reviewed capacities for several different MPOs. The capacities for freeways are very similar to the capacities for the base 2010 B-M model. For ramps, the capacities for other MPO areas were typically lower in comparison to the 2010 B-M model. For major arterials, minor arterials, collectors and locals, the capacity calculations were typically higher for the MPOs compared. Most of these MPOs used a Level of Service E for capacity calculations, reason why their capacities were higher.

Figure 3 Capacity Comparisons to Bismarck Mandan MPO 2010 Base Year Model

For the 2015 base year model, network-wide capacities were updated to reflect the most recent Highway Capacity Manual HCM 6th Edition and capacities estimated in other recent literature. The calculation of capacities took into account several variables including the functional classification, the number of through links, the number of turn lanes, the location of the intersection (rural, urban, CBD, suburban), the intersection control and effective green ratios, heavy vehicle adjustment factors and the speeds. The capacities used for the 2015 model were slightly different from the 2010 models and represent the state-of-the-art in capacity calculations in TDM. The next subsections discuss the capacity calculations for different types of intersections.

3.1.Capacity Calculations for Signalized intersections

For signalized intersections a step by step procedure was used to estimate the capacities.

3.1.1. Step 1: Develop Lane Groups for each Link

The first step defined the lane groups for each link. For the 2015 network, lane groups are defined by the Attribute Linkgrp1. Table 5 shows the codes for each link group. The lane group describes the geometry at the B-node of each link including the number of through lanes, the number of right turn lanes and the number of left turn lanes. The first Number in the linkgroup1 category shows the number of through lanes while the second number represents the number of turn lanes for either right or left turns as shown in Table 5. For example, if Linkgroup1 for a link was 20, it meant that link had two through lanes with no turn lanes. Similarly, if the Linkgroup1 code was 35, it means the link had three through lanes, with two right turn lanes.

Code	Lane Group Description
N0	N through lanes and no turn lane
N1	N through lanes and single exclusive left turn lane
N2	N through lanes and two exclusive left turn lanes
N3	N through lanes and continuous exclusive left turn lane from intersection to intersection
N4	N through lanes and single exclusive right turn lane
N5	N through lanes and two exclusive right turn lanes
N6	N through lanes and continuous exclusive right turn lane from intersection to intersection
N7	N through lanes, single exclusive left turn lane and single exclusive right turn lane
N8	N through lanes, two exclusive left turn lanes and single exclusive right turn lane

N through lanes, two exclusive right turn lanes and single exclusive left turn lane

 Table 5 Lane Group Classification (Linkgroup 1)

3.1.2. Step 2: Determining saturation flow rate (S_i) for each lane group:

Step 2 included determining the saturation flow rate (S_i) for each Lanegroup using Equation 1. It is important to note that not all the parameters in Equation 1 were used for the model. Some of the parameters like the lane width and approach grades are not used in calculating the saturation flow rate. If the data is however available, say for a subarea study, these parameters can potentially be used to estimate capcities. The parameters were developed from different sources including Highway Performance Monitoring System (HPMS) and HCM6.

Equation 1

N9

$$\begin{split} S_i &= S_0 \times N \times f_W \times f_{HV} \times f_g \times f_p \times f_{bb} \times f_a \times f_{LU} \times f_{LT} \times f_{RT} \times f_{Lpb} \times f_{Rpb} \times PHF \\ \end{split}$$
Where:

S_i	=	Saturation flow rate for subject lane group, expressed as a total for all lanes
		in lane group (vph)
So	=	Base saturation flow rate per lane (pcphpln)
Ν	=	Number of lanes in lane group
fw	=	Adjustment factor for lane width
fhv	=	Adjustment factor for heavy vehicles in traffic stream
\mathbf{f}_{g}	=	Adjustment factor for approach grade
$\mathbf{f}_{\mathbf{p}}$	=	Adjustment factor for existence of a parking lane and parking activity
		adjacent to lane group
\mathbf{f}_{bb}	=	Adjustment factor for blocking effect of local buses that stop within
		intersection area

$\mathbf{f}_{\mathbf{a}}$	=	Adjustment factor for area type
\mathbf{f}_{LU}	=	Adjustment factor for lane utilization
\mathbf{f}_{LT}	=	Adjustment factor for left turns in lane group
frt	=	Adjustment factor for right turns in lane group
\mathbf{f}_{Lpb}	=	Pedestrian-bicycle adjustment factor for left turn movements
f _{Rpb}	=	Pedestrian-bicycle adjustment factor for right turn movements
PHF	=	Peak Hour Factor

The formulas for calculating the parameters in Equation 1 from the HPBS are show next:

1. Base Saturation Flow Rate, So

Following the HPMS procedure, the base saturation flow rate was set at 1,900 passenger car per hour per lane (pcphpl).

2. Adjustment Factor for Lane Width, f_W

Using HPMS lane adjustment factors directly, Equation 2 was used to calculate the adjustment for lane widths,

Equation 2

 $f_W = 1 + \frac{(W - 12)}{30}$

Where:

W = Lane width, minimum of 8ft and maximum of 16ft.

3. Heavy Vehicle Adjustment Factor, f_{HV}

Equation 3 was used to calculate the heavy vehicle adjustment factor.

Equation 3

$$f_{HV} = \frac{100}{100 + HV(E_T - 1)}$$

Where:

HV = percent heavy vehicles

 $E_T = 2.0$ passenger car equivalents

4. Adjustment for Grade, f_g

Due to lack of grade information on urban minor arterials and collectors, HPMS uses fg as 1.0.

5. Adjustment for Parking, f_p

For parking adjustment, Equation 4 is used to calculate the capacity adjustment.

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019

Equation 4

$$f_p = \frac{N - 0.1 - \frac{18N_m}{3,600}}{N}$$

Where:

 $f_p = Parking adjustment factor$

N = Number of lanes in group

 N_m = Number of parking maneuvers per hour (6 for two-way streets with parking one side, 12 for two-way streets with parking both sides or one-way streets with parking one side, 24 for one-way streets with parking on both sides)

If no parking space or parking data is available, then f_p is set equal to 1.0.

6. Adjustment for Bus Blockage, f_{bb}

Due to non-availability of bus routes data, f_{bb} is set to 1.0. Also default values of f_{bb} used in HCM 2000 for bus routes are close to one.

7. Type of Area Adjustment, f_a

According to HCM 6, f_a is set to 0.9 for CBDs and 1 elsewhere.

8. Lane Utilization Adjustment, f_{LU}

A lane utilization adjustment factor of 1.0 was used for the model.

9. Adjustment for Left Turns, f_{LT}

Adjustment factor of 0.95 is used for left turn movements to estimate the capacities in this study.

10. Adjustment for Right Turns, f_{RT}

For right turn movements, the adjustment factor of 0.85 was used for the model.

11. Adjustment for Pedestrian-Bicycle Blockage on Left Turns, fLpb

Adjustment factor for pedestrian-bicycle blockage is set to 1.0 in HPMS procedure due to non-availability of extensive inputs.

12. Adjustment for Pedestrian-Bicycle Blockage on Right-Turns, f_{Rpb}

Similarly, the adjustment factor for pedestrian-bicycle blockage for right turns is also set to 1.

13. Peak Hour Factor (PHF)

The default values of 0.92 and 0.88 are set for urban and rural sections respectively.

A g_i/C value of 0.45 is used for principal and minor arterials while 0.40 is used for collectors. These values were default values suggested in HPMS. The values were evaluated based on signal timing data provided by the MPO and were found to be reasonable.

3.1.3. Step 3: Approach Capacity Calculation

After estimating the saturation flow rate for each lane group, the approach capacity for each link at the B end node of the link is calculated. This calculation is done by incorporating adjustment factors using the effective green ratio as shown in Equation 5.

Equation 5

$$C_{SI} = \sum_{i} S_i \times \frac{g_i}{C}$$

Where CSI is signalized intersection approach capacity,

Si represents saturation flow rate for lane group i and

 $\frac{g_i}{c}$ represents effective green ratio for lane group i.

3.2.Capacities for Stop Control Intersections

The calculation for capacities for links that have stop controls at the B-node end also follow a series of steps as described next.

3.2.1. Step 1: Calculate the Potential Capacity for each Turning Movement

The potential capacity for each turning movement uses the conflicting flow rate, the critical gap, the number of lanes, follow up time for each movement, and percent heavy vehicles as input parameters. Equation 6 is used to calculate the potential capacity for stop controlled intersections for movements that are not shared.

Equation 6

$$C_{p,x} = CV_{c,x} \times \frac{e^{-V_{c,x} \times t_{c,x}/_{3600}}}{1 - e^{-V_{c,x} \times t_{f,x}/_{3600}}}$$

Where:

$$C_{p,x}$$
=Potential Capacity of movement x (vph) $CV_{c,x}$ =Conflicting flow rate for each movement x (vph) $t_{c,x}$ =Critical gap (seconds) for each movement x $t_{c,base}$ = $t_{c,base} + (P_{HV} * t_{c,HV})$ $t_{c,base}$ =Default values from Table 6

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019

tc,HV	=	1.0 for one or two-through lane roads
		2.0 otherwise
Phv	=	Percent of heavy vehicles in traffic stream, peak period, expressed as decimal
t _{f,x}	=	Follow-up time (seconds) for each movement x = $t_{f,base} + (P_{HV} * t_{f,HV})$
t _{f,HV}	=	0.9 for one or two through lane roads 1.0 otherwise

Table 6 and Table 7 show the default values that were used for calculating the potential capacities for stop-controlled intersections in the model.

Table 6 Default values for calculating potential capacities (Cp,x) of stop sign-controlled highways

Vehicle Movement (x)	Base Critical Gap, t _{c,base}	Follow-up Time, t _{f,base}
Right Turns	6.2	3.3
Through	6.5	4.0
Left Turns	7.1	3.5

Table 7 Default Values for Conflicting Flow Rates

Functional Class	Conflicting Flow Rate, CV _{c,x}
Rural Principal Arterials	100
Rural Minor Arterials	150
Other Rural	200
Urban Principal Arterials	250
Urban Minor Arterials	500
Other Urban	750

3.2.2. Step 2: Determine Potential Approach Capacity for Shared Lanes

For stop controlled intersections with shared turning lanes, Equation 7 was used to determine each approach's capacity. If turn lanes are not shared, step 2 is skipped.

Equation 7

$$C_{p,SH} = \frac{\sum_{x} V_{x}}{\sum_{x} \left(\frac{V_{x}}{C_{p,x}}\right)}$$

Where,

NDSU Upper Great Plains Transportation Institute2015 Bismarck Mandan TDM UpdateFinal Report: February, 2019

 $C_{p,x}$ = Potential capacity of x movement in the shared lane (vph)

3.2.3. Step 3: Calculate Approach Capacity for each Lane Group Type

Table 8 shows the different equations that are used to calculate the approach capacity for each lane group as described previously for stop controlled intersections.

Table 8. Stop Sign Control Intersection Capacity Equations for Different Lane Groups

1	All Movements from Shared Lane	$C_A = N_T \times C_{p,SH}$
2	Shared LT + T lane; exclusive RT lane	$C_A = N_T \times C_{p,SH(LT+T)} + N_{RT} + C_{p,RT}$
3	Shared RT + T lane; exclusive LT lane	$C_A = N_T \times C_{p,SH(RT+T)} + N_{LT} + C_{p,LT}$
4	Exclusive lanes for all movements	$C_A = N_{LT} \times C_{p,LT} + N_T \times C_{p,T} + N_{RT} \times C_{p,RT}$
5	Consider only through volumes	$C_A = N_T \times C_{p,T}$

Where:

N_{T}	=	Number of peak through lanes; 1 for rural highways with two through
		lanes, 2 for rural highways with three through lanes
NLT	=	Number of left turn lanes
Nrt	=	Number of right turn lanes
C _{p,SH}	=	Potential capacity of shared lane (vph)
$C_{p,T}$	=	Potential capacity for through movement (vph)
$C_{p,RT}$	=	Potential capacity for right turn movement (vph)
$C_{p,LT}$	=	Potential capacity for left turn movement (vph)

3.3.Freeway Capacity

For freeways, the following steps detailed the equations and procedures used to calculate their capacities.

3.3.1. Step 1: Calculate Free Flow Speed

Equation 8 is used to calculate free flow speeds. The equation utilizes the base free flow speed which is calculated using an algorithm that incorporates real time travel time data, lane width, right shoulder, number of lanes and interchange density adjustments.

Equation 8

$$FFS = BFFS - f_{LW} - f_{LC} - f_N - f_{ID}$$

Where:

BFFS = Base free flow speed

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019

f_{LW}	=	Adjustment factor for lane width
f_{LC}	=	Adjustment factor for right shoulder lateral clearance
f_N	=	Adjustment factor for number of lanes
fid	=	Adjustment factor for interchange density

Table 9 shows the adjustment factors for lane width. This value is zero for 12ft wide lanes. However, if different widths exist, the values should be adjusted accordingly.

Table 9 Adjustment Factors Lane Width

Lane Width	Reduction in FFS (mph, f _{LW})
12 Ft	0.0
11 Ft	1.9
<= 10 ft	6.6

Table 10 shows the adjustment factors for right shoulder clearance. The model assumed a right shoulder clearance of greater than 6Ft. Adjustments should be made accordingly if these are different. For studies used to evaluate the construction/reconstruction impacts on freeways, this parameter will be critical in determining the reduced capacity if shoulders are closed or reduced.

Right Shoulder		Reduction in l	FFS (mph, f _{LC})	
Width (Ft)	Lanes in one direction			
	2	3	4	>=5
>=6	0.0	0.0	0.0	0.0
5	0.6	0.4	0.2	0.1
4	1.2	0.8	0.4	0.2
3	1.8	1.2	0.6	0.3
2	2.4	1.6	0.8	0.4
1	3.0	2.0	1.0	0.5
0	3.6	2.4	1.2	0.6

 Table 10 Right Shoulder Clearance Adjustment Factor

Table 11 shows the adjustments used for interchange densities. The distance between two nodes connecting the interchanges is used to calculate the interchange density. The values for small urban areas are used in the model. For the model, all interchange densities were greater than 1 mile. This parameter becomes important when new interchanges that increase interchange densities are being considered as they will potentially reduce freeway capacities.

Area Size	Interchange Density	Interchange Adj. Factor, (f _{ID})
Small Urban	0.70	1.0
Small Urbanized	0.76	1.3
Large Urbanized	0.83	1.7
Small Urban	0.83	1.7
Small Urbanized	0.88	1.9
Large Urbanized	0.91	2.1

Table 11 Adjustments for Interchange Density

Table 12 details the adjustment factors used for adjusting freeway capacities based on the number of lanes.

Table 12 Adjustments for Number of Lanes

No of Lanes (One direction; Urban only)	Reduction in FFS (mph, f_N)
>=5	0.0
4	1.5
3	3.0
2	4.5

3.3.2. Step 2: Calculate Base Freeway Capacity

The base freeway capacity is calculated using Equation 9 for freeways with speeds less than 70mph and freeways with speeds greater than 70mph.

Equation 9

 $BaseCap = 1,700 + 10FFS; for FFS \le 70 mph$

BaseCap = 2,400; for FFS > 70 mph

3.4.Ramp Capacity Calculations

The following steps were used to calculate ramp capacities:

3.4.1. Step 1: Calculate Free Flow Speed

Using Equation 10, the free flow speed for ramps were calculated as follows

Equation 10: Ramp Capacity Equation

 $S_{fo} = 25.6 + 0.47 * S_{pl}$

Where $S_{fo} =$ base free-flow speed (BFSS); and

S_{pl}= posted speed limit

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019

3.4.2. Step 2: Calculate Maximum Saturation Flow Capacity

The Chattanooga-Hamilton model was used to develop Equation 11 to calculate ramp capacities as follows:

Equation 11: Maximum Saturation Flow Capacity

 $SF = C * N* (v/c)_I * PHF$

Where SF-maximum service flow rate;

C ideal capacity based on S_{fo};

N represents lumber of lanes;

(v/c) is rate of service flow for levels of service D or E. v/c=0.88 at LOS D, 1 at LOS E; and

PHF represents peak hour factor.

Table 25 and Table 26 Appendix 1 shows sample Capacity calculations that are used in the model for signalized intersections.

4. MODEL INPUT DATA

The main data used as input to the model are the network and socioeconomic data. The two datasets were developed through a collaborative effort between MPO staff and ATAC. These data are discussed next.

4.1.Transportation Network Data

The transportation network is an abstract representation of the transportation system that has essential data describing the available transportation supply. The network is maintained in GIS as a geodatabase that contains four feature classes. These feature classes included: links which represent the roadway, nodes which represent intersections, centroids which are the trip origin/destination points for transportation analysis zones (TAZs) and external centroids which are external loading trip points. The network was updated by ATAC and the MPO to represent 2015 base year conditions.

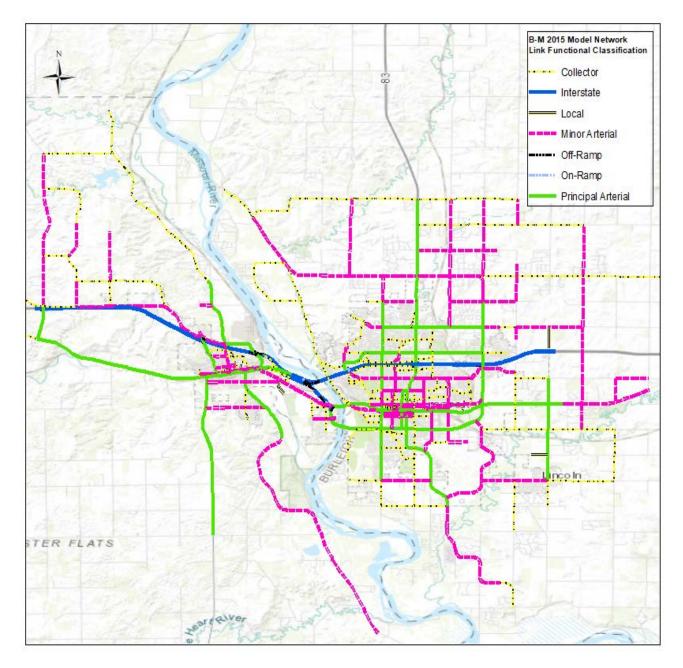
The main attributes of the network that are used in the model include the network geometries (number of lanes and turn lanes), posted and Free Flow Speeds, functional classification, length of links, link ADTs (passenger and truck counts), link location area type and the intersection controls.

4.1.1. Distribution of Modeled Network by Functional Classifications

Table 13 shows the percentage of centerline miles by functional class.

Table 13 Centerline Miles Distribution by Functional Classification

Functional Class	Centerline Miles	Percentage
Interstate	35.32261	9.6%
Major	76.7199	21.0%
Minors	131.20811	35.8%
Collectors	121.0004	33.1%
Locals	1.80722	0.5%



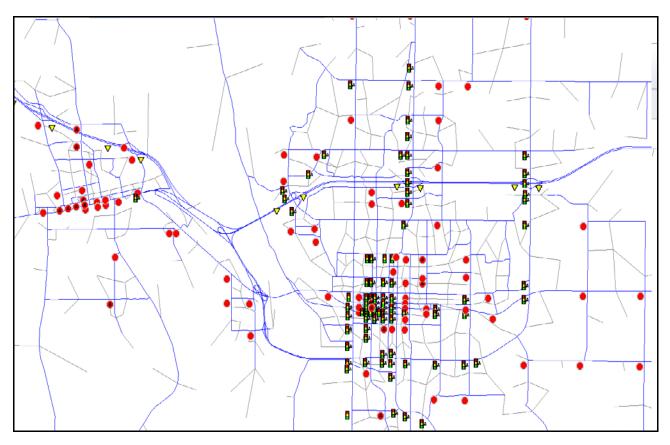

Figure 4 B-M 2015 Model Network

Figure 4 shows the modeled network distribution by functional class. The network does not show the centroid connectors.

Intersection controls were added to the model to incorporate delay experienced by road users. CUBE software uses a built in algorithm to calculate the delays that each intersection type contributes to the model. Two way stop controls; four way stop controls; Signals; Roundabouts and Yield controls were added as inputs to the model and are shown in Figure 5.

NDSU Upper Great Plains Transportation Institute Draft Summary Report: September, 2018

The intersection control signal timing data was provided by the B-M MPO and represented actual signal timing data for signals for three time periods: AM Peak, PM Peak and Off peak periods. Using intersection data significantly enhanced the models replication of actual travel times. Without the intersection data, the model could only reasonable replicate 60% of ADT.

Figure 5 Intersection Data Used in Mode

4.2.Socioeconomic Data

Socioeconomic data are used to generate the total number of trips produced and attracted by each TAZ in the TDM. The TAZ geographies and the socioeconomic data included within each TAZ were developed by a collaborative effort between MPO staff and the ATAC. The socioeconomic data that was used in the model is described next.

4.2.1. TAZ Geography files:

Total of 406 internal TAZs were used for the 2015 model. Several TAZs were modified (split or merged) based on input from both the MPO and ATAC.

4.2.2. Socioeconomic Data TAZ Attributes

The socioeconomic data within the TAZ contained the following fields

4.2.2.1. Number of Persons per household in each TAZ according to the following categories (attributes)

- 1. # of one person households
- 2. # of two person households
- 3. # of three person households
- 4. *#* of four person households
- 5. *#* of five person households
- 6. > # five person households
- 7. Total number of households

4.2.2.2.Vehicles per household in each TAZ¹

- 1. # of zero vehicle households
- 2. # of one vehicle households
- 3. # of two vehicle households
- 4. # of three vehicle households
- 5. # of four vehicle households
- 6. > 4 vehicle households

4.2.2.3. School age children per household in each TAZ in four categories²

- 1. # of Grade school age children
- 2. # of Middle age school children
- 3. # of High school age children
- 4. # of College age (18-23)

¹ Data was not in the 2010 model

² Data was not in the 2010 model

NDSU Upper Great Plains Transportation Institute

Final Report: February, 2019

4.2.2.4. Employment data (# for each TAZ)^3

- 1. Manufacturing (NAICS 31-33)
- 2. Construction and resources (NAICS 21, 23)
- 3. Retail (NAICS 44-45)
- 4. Service (NAICS 52,53,55,56,56,51,62,71,81,99)
- 5. Agriculture (NAICS 11)
- 6. Wholesale Trade, Trans Utilities (NAICS:22,48-49,42)
- 7. Education (NAICS 61) with the following additional fields
 - a. Elementary school enrollment for each TAZ
 - b. Middle school enrollment for each TAZ
 - c. High school enrollment for each TAZ
 - d. College enrollment data
 - e. Number of on campus students for each college
 - f. Number of off campus students for each college
 - g. Number of parking spots reserved for college students

h.Number of parking spots reserved for staff

4.2.2.5. Enplanements

8. Yearly enplanements for the Bismarck Airport for 2015 (259,734)

4.2.2.6. Special generators

9.Special generator TAZS (wholesale distributors (Walmart and Super Target, large retail stores, and Malls).

4.2.2.7. ADT at external locations

Used as estimates of trips that have at least one trip end outside of the MPO area.

³ Data has been disaggregated (Previously, it included retail, other and service jobs)
 NDSU Upper Great Plains Transportation Institute
 2015 Bismarck Mandan TDM Update
 Final Report: February, 2019

5. TRIP GENERATION

Trip generation is the initial step of the TDM and estimates the number of trips produced and attracted to each TAZ. The socioeconomic data discussed in Chapter 4 was used together with regression parameters to estimate the trips produced and attracted to each TAZ. Trips Produced are typically a function of the household characteristics for each TAZ, while trips attracted are a function of the employment of each TAZ. As mentioned previously, an improvement of this model was the inclusion of long-haul freight movements. The next sections describe in detail, the different trip generation procedures that were used and their results.

5.1.Internal-Internal Passenger Vehicle Trip Productions and Attractions

The Internal-Internal Passenger Vehicle Trip Generations (II Trips) represent the passenger vehicle trips that originate and terminate within the MPO area. These trips are classified into six main trip purposes including (Home Based Work) HBW, Home-Based Shop (HB-Shop), Home Based Other (HBO), Home Based School K-12 (HBSchool K-12), Home Based University (HBU) and Non Home Based (NHB) trips.

5.1.1. Trip Productions

Table 14 shows the trip generation equations that were used to develop the II trip production tables. The numbers in bold show the actual regression parameters used while the number underneath each one shows the p-value for each of the regression equations. The model parameters were developed from a household travel survey that was done in the Fargo-Moorhead area. These parameters are the starting equations that were used, the final equations were adjusted during the calibration process to reflect different area types and to match the observed traffic counts in the trip assignment step.

Persons per Household					
Purpose	1	2	3	4+	Overall
HDW	1.049	1.665	2.624	2.457	2.21
HBW	14.9	19.82	13.61	17.15	30.45
IIDCII	1.127	2.092	3.424	3.424	2.86
HBSH	5.03	11.52	5.70	6.65	14.23
НВО	1.322	2.465	2.390	4.665	3.08
про	11.9	21.04	9.64	9.74	20.81
NUD	2.006	2.421	2.961	3.329	3.04
NHB	11.44	17.78	7.39	10.1	22.49

Table 14 Internal-Internal Fassenger 1110 Generation Equation	rnal-Internal Passenger Trip Generation Equation	ions
---	--	------

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019

5.1.2. Trip Attractions

Trip attractions represent the number of trips attracted to each zone typically based on employment and the size of the school for school trips. Table 15 shows the trip attraction rates (from NCHRP 718) that were used to develop trip attraction tables. Although the socioeconomic data showed several different job types, these were aggregated to represent the categories shown in Table 15.

Table 15 Trip Attraction Rates

Purpose	Retail	Service	Other
HBW	1.26	1.26	1.26
НВО	5.08	2.38	1.1
NHB	2.06	1.37	.5

Table 16 shows the school trip attraction rates that were used for the model. These trip rates were obtained from the ITE Trip Generation Manual.

Table 16 School Trip Attraction Rates

School	Rate
Elementary	1.85
Middle	1.85
High	1.96

5.2.Freight Data

Freight movements have been an issue for previous models as they have not accounted for freight movements. Long haul freight movements are included for the 2015 model. A commodity-based model will be developed using the Commodity Flow Survey Data. This data is publicly available for the 2015 base year. Commodity Flow Survey Data exists only for the largest metropolitan areas and for the rest of the states. The implication is that for the B-M MPO, the commodity flow survey data had to be disaggregated from statewide totals to local data. Data on the employment for the North Dakota state was used to disaggregate freight data to B-M MPO and for the rest of the states.

Ordinary Least Square Models were used to develop model parameters that were applied to the number of jobs for each freight generation industry for productions and attractions. The model used data for the metropolitan areas that had disaggregate commodity flow survey data to develop the parameter estimates. These parameter estimates were then applied to the commodity flow survey data for North Dakota to obtain the total tonnage of freight produced and attracted to the MPO. The

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019 total tonnage was assigned to the TAZ level based on the number of jobs for each commodity group in the TAZ. Table 17 shows the results of the freight model.

Productions		
NAICS Category	Freight Productions	
Manufacturing Jobs	328	
Industrial Jobs	263	
Total	591	
	Attractions	
NAICS Category	Freight Attractions	
Manufacturing Jobs	229	
Industrial Jobs	2242	
Retail Jobs	706	
Service Jobs	0.15	
Other Jobs	594	
Total	3771.15	

Table 17 Freight Trip Productions and Attractions (IE/EI)

6. TRIP DISTRIBUTION

The trip distribution step takes the trip productions and attractions developed in the trip generation step and assigns them between Origin-Destination pairs. The gravity model assigns trips based on the number of productions, attractions, a friction factor (F), and a scaling factor (K). The friction factor is a value that is inversely proportional to distance, time, or cost which is a measure of the travel impedance between any two zonal pairs. The k factor is a scaling factor that is used during calibration and it limits or increases the volume of traffic that crosses sections of the network. Equation 12 shows the gravity model formulation used in the model.

Equation 12 Gravity Model Used for Trip Distribution

$$T_{ij} = P_i \frac{K_{ij} A_j F_{ij}}{\sum K_{ij} A_j F_{ij}}$$

Tij = Number of trips assigned between Zones i and

j;

P_i = Number of Productions in Zone i;

A_j = Number of Attractions in Zone

j; Fij = Friction Factor; and

 K_{ij} = Scaling factor used in calibration to influence specific ij pairs

The typical output of the trip distribution step in TDMs is a matrix showing the origins and destination of each trip. The gravity model uses the trip generation outputs (production and attractions by trip purpose for each zone), a measure of travel impedance between each zonal pair (travel time), and socioeconomic/area characteristic variables ("K-factor") variables as input. The K-factor is used to account for the effects of variables other than travel impedance in the model. The OD data were used to develop K-factor matrices imputed in the trip gravity model that were used for distributing IE/EI trips. For the TDM, trips were distributed separately for the different periods.

To develop K-factors, it was necessary to aggregate the external portions of these trips into four main external super zones. For example, all the trips that originated from zones to the North of the MPO area were aggregated to one "super TAZ". The proportions of trips from every internal B-M OD TAZ to the "super TAZ" was calculated and used as the K-Factor for the distribution of trips. The K-factors used in this way enabled the model to distribute trips more efficiently.

For EE trips, the OD data were used to develop K factors in a similar manner to those

NDSU Upper Great Plains Transportation Institute Final Report: February, 2019

For K-12 school trip distribution, school zones were used to assign trips for Bismarck Mandan Public Schools. Gravity model was used to distribute private school trips.

7. 1. TRIP ASSIGNMENT

Trip assignment is computationally the last step in travel demand modeling. The trip assignment step develops route paths that each trip will be choosing on the network when going from its origin to its destination. Trip assignments were carried out for three origin destination matrixes; AM peak, PM peak and off peak periods.

The user equilibrium traffic assignment method was used for assigning trips for the model. Additionally, In the user equilibrium method, road users of the system choose the route that would minimize their cost (or travel time) without consideration to the overall average travel time on the system. In system-equilibrium, system users would behave cooperatively in choosing their own route to ensure the most efficient use of the system, thus optimizing the overall average cost of travel on the system.

The formulation used to calculate the travel cost for the equilibrium assignment method is shown in Equation 13. It takes into account the link travel time, the value of travel time and the link distance.

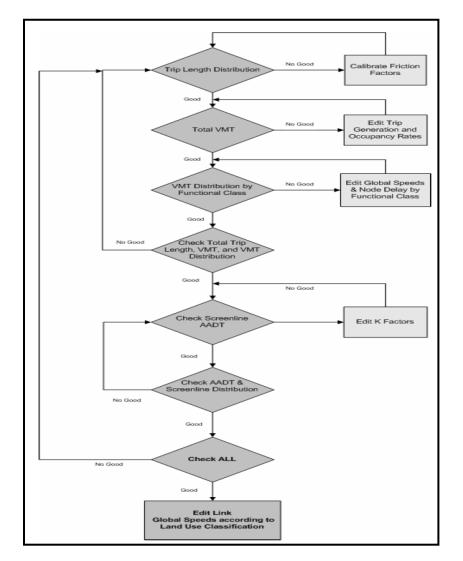
Equation 13 Trip Assignment Cost Equation

 $TC = (VTT * L_t) + 4 * L_d$

Where:

TC = Link Travel Cost

VTT= Value of Travel Time (\$12.5 for the metro area)


 L_t = Link Travel Time, and

 L_d = Link Length.

Junction-based assignment uses an intersection constrained assignment method and uses the intersection controls to assign node delays to the network. Junction-based modeling attempts to simulate congestion on a roadway network by modeling what happens at the intersections using the intersection control data like signal timing data.

8. VALIDATION AND CALIBRATION

Model calibration refers to the adjustment of model input parameters in order to replicate observed real world data for a base year to otherwise produce reasonable results. It involves adjusting model input parameters such as trip generation rates, node delays, free flow speeds, K factors and friction factors. Figure 6 shows the calibration and validation flow chart that was used for the model. It was an iterative process that involved adjusting the model parameters until a certain level of confidence of the model's replication of real world data was achieved.

Figure 6 Calibration Flow Chart

Model validation compares base year calibrated models output to observed data. Ideally, model estimation and calibration data should not be used for validation but this is not always feasible. The two processes, calibration and validation typically go hand in hand in an iterative process. The next sections describe the different model parameters that were used for model calibration and validation.

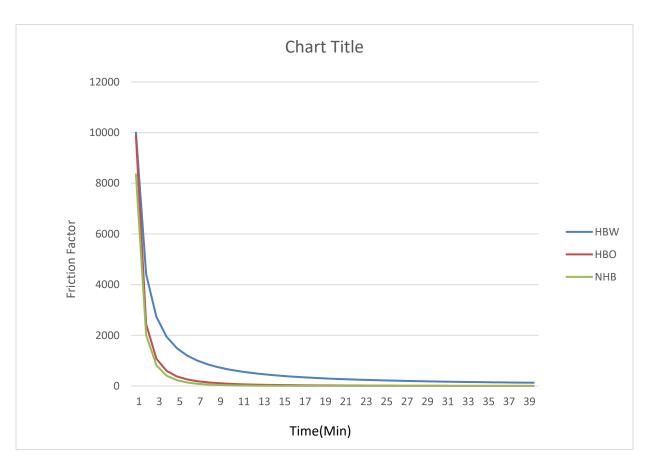
8.1. Trip Length Frequency Calibration and Validation

Trip length frequency distributions describe the traveler's sensitivity to travel time by trip purpose. Steeper curves mean more sensitive travel times. Friction factors are calibrated until a desired trip length frequency is validated against observed data. The friction factors are the main dependent variable in the gravity model. The gamma function was used to develop the friction factor for this model and are shown in Figure 7.

Equation 14 Friction Factor Equation

$$F_{ij}^p = a * t_{ij}^b * exp(c * t_{ij})$$

Where,


 F_{ii}^{p} = Friction factor for purpose p (HBW, HBO, NHB)

 t_{ij}^{b} = travel impedance between zone i and j,

a, b and c are gamma function scaling factors.

The friction factors were calibrated by adjusting the b and c parameters until the desirable trip length frequency distribution for Home Based Work Travel times were reached. Observed trip length frequency data for the home-based work trips were obtained from the census journey to work database for the metropolitan area. Only trips lower than 35 minutes were considered with the assumption that 35 minutes was the highest possible travel time between any two points within the metro area.

The average trip length for the observed data was calculated as 14.31 compared to the average trip length of 14.04 produced by the model for HBW trips. The desired average trip lengths for HBO and NHB trips were 96% and 79% of the average trip length for HBW trips. The average trip length for the models HBO and NHB trips were 13.54 and 11.10 minutes respectively.

Figure 7 Friction Factors

Figure 8 shows the comparison between observed trip length frequencies and the modeled trip length frequencies for HBW trips. The comparison was done for only HBW trips since that's the only observed data available. The two graphs are very similar to each other.

Figure 8 Comparison of Observed to Model Trip Length Frequency

8.2. Vehicle Miles Traveled (VMT) Calibration and Validation

The modeled vehicle miles traveled are a function of trips generated by the model and the length of those trips in miles. VMTs summaries provide an indication of the overall reasonableness of the travel demand in the study area. To calibrate the VMT values, ATAC first calibrated the total VMT for the entire model area. If the modeled VMT values were different from the values calculated by multiplying the counted ADTs by length (observed VMTs), ATAC adjusted the trip generation and vehicle occupancy rates until the model and reported VMT values were similar. Adjusting the trip generation and occupancy rates changes the total number of trips that are generated within the transportation model. This in turn increases or decreases the total number of vehicle miles traveled.

Once the total VMT was reasonable, ATAC checked the VMT distribution according to the functional class. VMT summaries by functional classification provide an indication of how well the models assignment procedures perform. They will indicate if the model handles free flow speeds, capacities or whether the trip assignment function has any issues. To calibrate the VMT by facility type, if functional class VMT distribution was off target, global speeds by facility type were adjusted.

Table 18 shows the VMT comparison between modeled and observed VMTs and their various distributions as a percentage of total VMT by functional class. The model performs very well in replicating the VMTs for Interstates and Major arterials with VMT differences of less than 5.1% and had similar distributions to the observed VMTs. Overall, the model performs within reasonable deviations in replicating VMTs by functional class with overall 0.3% deviation.

Functional Class	Observed VMT	Modeled VMT	% Diff
Interstate	161,586	153,725	-5.1%
Major	476,795	469,803	-1.5%
Minors	279,917	288,556	3.0%
Collectors	133,879	137,245	2.5%
Locals	-	-	0.0%
Total	1,052,177	1,049,329	-0.3%

Table 18 Modeled VMTs compared to Observed VMTs by Functional Class

Table 19 shows the observed and modeled VMT comparison by volume range. The model performs well for replicating VMTs for higher volume ranges with VMT differences of less than 9%. The VMT difference is highest for ADT range less than 1000 i.e. 49.8%.

Table 19 Modeled VMTs compared to Observed VMTs by Volume Range

ADT Range	Observed VMT	Modeled VMT	% Diff
ADT >25,000	65,493	63,408	-3.3%
25,000 TO 10,000	482,717	445,102	-8.5%
10,000 TO 5,000	294,975	293,243	-0.6%
5,000 TO 1,000	198,951	227,592	12.6%
ADT<1000	10,041	19,984	49.8%
	1,052,177	1,049,329	-0.3%

8.3.Modeled ADT Comparison to Observed ADT

Comparing the modeled ADTs to the Observed ADTs is the ultimate test of how well the model can replicate ground truths. The MPO provided traffic counts for several links that were compared to the Model ADTs. Two comparisons are made, one for the different functionally classifications and one by volume ranges.

Table 20 shows the comparison of the modeled and observed ADTs by functional classification. Overall, the model performs reasonably replicating over 73% of observed counts.

Functional Classification	Below Criteria	Within Criteria	Above Criteria	Total	%age Within	RMSE %
Interstates	0	10	0	10	100%	14%
Major Arterials	21	133	23	177	75%	35%
Minor Arterial	27	130	33	190	68%	11%
Collectors	25	130	19	174	75%	32%
Locals	0	0	0	0	100%	0%
Total	73	403	75	551	73%	
Percent	13%	73%	14%			

 Table 20 Comparison of Modeled and Observed ADTS by Functional Classification

Table 21 shows the comparison of modeled and Observed ADTs by volume range. The FHWA criterion sets limits to the deviations between observed and modeled ADTs. Overall the model meets all deviation criterion for all the volume ranges and replicates 73% of the observed traffic.

 Table 21 Comparison of Modeled and Observed ADT by Volume Range

ADT Range	#Above	#Within	#Below	%Within	RMSE
ADT >25,000	0	14	0	1	0.0821
25,000 TO 10,000	10	95	33	0.6884	0.2041
10,000 TO 5,000	25	100	28	0.6536	0.3045
5,000 TO 2,500	19	85	12	0.7328	0.4188
2,500 TO 1,000	15	86	0	0.8515	0.7606
ADT<1000	8	34	0	0.8095	2.1877
Total	77	414	73	73%	

8.4. Root Mean Square Error and Percent Root Mean Squared Error

The comparison between the modeled and observed ADTS give a good indication of a how well the model replicates real life. However, they do not provide statistical measures of goodness of fit test for the models replication of ground truths. Root Mean Squared Error (RMSE) and Percent Root Mean Squared Errors %RMSE were used to calculate the accuracy of the model. RMSE compares the error between the modeled and observed traffic volumes for the entire network, giving a statistical measure of the accuracy of the model. RMSE and % RMSE were found by squaring the error (difference between modeled and counted ADTs) for each link and then taking the square root of the averages as shown in Equation 15.

Equation 15 RMSE and % RMSE Calculations

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} [(Count_i - Model_i)^2]}{N}}$$

and

$$\% RMSE = \left[\frac{RMSE}{\sum_{i=1}^{N} Count_i/N}\right] * 100$$

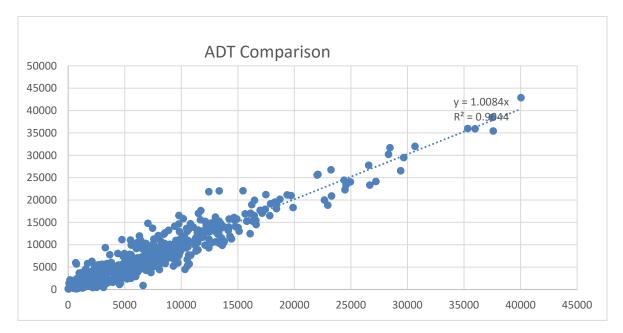
Where:

Count_i = Observed traffic count on link i;

Modeli = Modeled traffic volume for link *I*; and

N = The number of links in the group of links including link *i*, (*number of links with counts*)

Table 22 shows the %RMSE by volume range. The % RMSE is below the typical deviation limits for all the volume ranges shown indicating a good fit between the modeled and observed traffic volumes. This is an indication that the model is performing reasonably in replicating observed traffic. The overall % RMSE for the model is 27.45.


Table 22 RMSE	Comparison	by Volume Range
---------------	-------------------	-----------------

Volume Range	RMSE (%)	Typical Limits (%)
AADT>25,000	8%	15-20 %
25,000 to 10,000	20%	25-30 %
10,000 to 5,000	30%	35-45 %
5,000 to 2,500	42%	45-100 %
2,500 to 1,000	76%	45-100 %
AADT<1000	219%	>100 %

8.5. Scatter Plots, R Squares of Model and Observed Traffic

Scatter plots of the modeled traffic volumes against the observed traffic volumes are a good indicator of the model's fit. Figure 9 shows the scatter plot of modeled traffic volumes versus observed counts. The scatter plot suggests that the amount of error in the modeled volumes is proportional to the observed traffic count which is an indication of a good fit between the model and the observed traffic counts.

The R-square (coefficient of determination) is the proportion of the variance in a dependent variable that is attributable to the variance of the independent variable. They typically measure the strength of the relationships between the assigned volumes and the traffic counts. It measures the amount of variation in traffic counts explained by the model. The modeled R-square of 0.90 shows a strong linear relationship between modeled and observed traffic counts.

8.6.Link Travel Time Validation

To evaluate how well the assignment algorithms and the intersection control data performed in the model assignment, sample travel times from the model were compared to average travel times that were obtained using online mapping tools. An online API was developed to collect the data for AM, PM and Offpeak travel times for the average weekdays. Table 23 shows the comparison of the modeled travel times and the average travel times collected. The modeled travel times are within plus or minus one minute for the different peak periods for the group of selected roadways. This is an indication that the model's assignment algorithms are performing very well in terms of replicating real time travel time data.

	Distance	Obser	rved Trave	l Time		leled Ti		
Link Type/Location	(Miles)		(Min)	_	Time (Min)			
		AM	PM	OFF	AM	PM	OFF	
	Principal	Arterial	S					
State St - Century Ave to East Divide	1	3	3	3	2.92	2.65	2.36	
Washington St - 43rd Ave N to								
Boulevard	3.3	5 to 8	5 to 8	5 to 7	9.98	6.83	5.09	
Bismarck Expressway - Washington		6 to		6 to				
St to 5th Ave	3.6	10	6 to 12	12	7.08	7.54	6.69	
W Main St - 6th Ave NW to								
Memorial Hwy	1.3	4 to 6	4 to 6	4 to 6	5.31	3.58	3.55	
	Minor A	rterials						
Divide Ave - Washington St N to								
19th St N	1.5	4 to 6	4 to 7	5	4.6	4.63	3.62	
Broadway - Washington St to 16th St								
N	1.3	5 to 6	5 to 7	5 to 7	4.46	3.78	3.45	
Highway 1804 - US Highway 83 to								
80th St NE	5	7	7	7	5.53	5.61	5.47	
1st St - Sunset Dr to Mandan Ave	1.3	4 to 6	4 to 6	4 to 6	5.13	4	3.73	
	Collec	ctors						
C Ave - Griffin St to 16th St N	1.5	6 to 8	5 to 6	6 to 7	5.35	4.97	4.06	
Interstate Ave - Century Ave W to								
State St	1.8	4 to 7	5 to 7	5 to 7	4.74	4.16	3.7	
3rd Ave - Division St to W Main St	0.6	3	3	3	2.39	2.19	2.18	

Table 23 Travel Time Validation

8.7. Screen Line Comparisons

Table 24 shows the screen line comparisons in order to validate the observed vs modeled ADT on major corridor locations. The screen line comparison has been done across railroad crossings, I-94 and Missouri river. The comparison results reveal that the difference between modeled and observed ADT is below +/-5%. This indicates model perform well across major corridor screen lines.

Table 24 Screen Line Comparison

Screen line	Modeled	ADT	% Difference	Difference
Railroad	86,858	88,309	1.6%	1,451
I-94	141,512	141,200	-0.20%	(312)
Missouri River	75,766	72,645	-4.30%	(3,121)

9. CONCLUSIONS

This document describes the development, calibration and validation of the B-M MPO base 2015 TDM. Several improvements were made to previous modeling efforts including the addition of Freight movements and better representation of capacities. Overall the model replicates observed traffic within typically accepted deviation limits.

10.APPENDIX

Table 25 Calculated Capacities for Signalized Intersections for Different Functional Classifications

Lane Group	Number of Through Lanes (N)	Number of Left Turn Lanes	Number of Right Turn Lanes	Total Number of Through Lanes	Type of Arterial	Area Type	Area Type Adjustment Factor (f _a)	Base Saturation Flow Rate (S _o)	Heavy Vehicle Adjustment Factor (f _{HV})	Saturation Flow Rate for Through Lanes (S)	Total Saturation Flow Rate	Effective Green Ratio (g/C)	Intersection Approach Hourly Capacity (C _A)	Intersection Daily Approach Capacity
N0	1	0	0	1	Principal	Urban	0.9	1900	0.90	1416	1416	0.55	779	7,787
	1	0	0	-		Rural	1	1900	0.90	1505	1505	0.55	828	8,276
	1	0	0	-	Minor	Urban	0.9	1900	0.90	1416	1416	0.45	637	6,371
	1	0	0	-		Rural	1	1900	0.90	1505	1505	0.45	677	6,772
	1	0	0	-	Collector	Urban	0.9	1900	0.99	1308	1308	0.4	523	5,233
	1	0	0	-		Rural	1	1900	0.99	1390	1390	0.4	556	5,562
	2	0	0	2	Principal	Urban	0.9	1900	0.90	2832	2832	0.55	1557	15,575
	2	0	0	-		Rural	1	1900	0.90	3010	3010	0.55	1655	16,553
	2	0	0	-	Minor	Urban	0.9	1900	0.90	2832	2832	0.45	1274	12,743
	2	0	0	-		Rural	1	1900	0.90	3010	3010	0.45	1354	13,543
	2	0	0		Collector	Urban	0.9	1900	0.99	2866	2866	0.4	1146	11,463
	2	0	0			Rural	1	1900	0.99	3046	3046	0.4	1218	12,183
	3	0	0	3	Principal	Urban	0.9	1900	0.90	4248	4248	0.55	2336	23,362
	3	0	0	1		Rural	1	1900	0.90	4514	4514	0.55	2483	24,829
	3	0	0	1	Minor	Urban	0.9	1900	0.90	4248	4248	0.45	1911	19,114
	3	0	0	1		Rural	1	1900	0.90	4514	4514	0.45	2031	20,315
	3	0	0	1	Collector	Urban	0.9	1900	0.99	4439	4439	0.4	1776	17,755

NDSU Upper Great Plains Transportation Institute Draft Summary Report: September, 2018

Lane Group	Number of Through Lanes (N)	Number of Left Turn Lanes	Number of Right Turn Lanes	Total Number of Through Lanes	Type of Arterial	Area Type	Area Type Adjustment Factor (f _a)	Base Saturation Flow Rate (S _o)	Heavy Vehicle Adjustment Factor (f _{HV})	Saturation Flow Rate for Through Lanes (S)	Total Saturation Flow Rate	Effective Green Ratio (g/C)	Intersection Approach Hourly Capacity (C_A)	Intersection Daily Approach Capacity
	3	0	0			Rural	1	1900	0.99	4718	4718	0.4	1887	18,870
N1	1	1	0	2	Principal	Urban	0.9	1900	0.90	1416	1841	0.55	1012	10,124
	1	1	0			Rural	1	1900	0.90	1505	1956	0.55	1076	10,759
	1	1	0		Minor	Urban	0.9	1900	0.90	1416	1841	0.45	828	8,283
	1	1	0			Rural	1	1900	0.90	1505	1956	0.45	880	8,803
	1	1	0		Collector	Urban	0.9	1900	0.99	1433	1863	0.4	745	7,451
	1	1	0			Rural	1	1900	0.99	1523	1980	0.4	792	7,919
	2	1	0	3	Principal	Urban	0.9	1900	0.90	2832	3257	0.55	1791	17,911
	2	1	0			Rural	1	1900	0.90	3010	3461	0.55	1904	19,036
	2	1	0		Minor	Urban	0.9	1900	0.90	2832	3257	0.45	1465	14,654
	2	1	0			Rural	1	1900	0.90	3010	3461	0.45	1557	15,575
	2	1	0		Collector	Urban	0.9	1900	0.99	2959	3403	0.4	1361	13,612
	2	1	0			Rural	1	1900	0.99	3145	3617	0.4	1447	14,467
	3	1	0	4	Principal	Urban	0.9	1900	0.90	4248	4672	0.55	2570	25,698
	3	1	0			Rural	1	1900	0.90	4514	4966	0.55	2731	27,312
	3	1	0		Minor	Urban	0.9	1900	0.90	4248	4672	0.45	2103	21,026
	3	1	0			Rural	1	1900	0.90	4514	4966	0.45	2235	22,346
	3	1	0		Collector	Urban	0.9	1900	0.99	4486	4934	0.4	1974	19,736
	3	1	0			Rural	1	1900	0.99	4767	5244	0.4	2098	20,976
N2	1	2	0	3	Principal	Urban	0.9	1900	0.90	1416	2265	0.55	1246	12,460
	1	2	0			Rural	1	1900	0.90	1505	2408	0.55	1324	13,242

Lane Group	Number of Through Lanes (N)	Number of Left Turn Lanes	Number of Right Turn Lanes	Total Number of Through Lanes	Type of Arterial	Area Type	Area Type Adjustment Factor (f _a)	Base Saturation Flow Rate (S _o)	Heavy Vehicle Adjustment Factor (f _{HV})	Saturation Flow Rate for Through Lanes (S)	Total Saturation Flow Rate	Effective Green Ratio (g;/C)	Intersection Approach Hourly Capacity (C_A)	Intersection Daily Approach Capacity
	1	2	0	-	Minor	Urban	0.9	1900	0.90	1416	2265	0.45	1019	10,194
	1	2	0	-		Rural	1	1900	0.90	1505	2408	0.45	1083	10,835
	1	2	0	-	Collector	Urban	0.9	1900	0.99	1480	2367	0.4	947	9,469
	1	2	0	-		Rural	1	1900	0.99	1573	2516	0.4	1006	10,064
	2	2	0	4	Principal	Urban	0.9	1900	0.90	2832	3681	0.55	2025	20,247
	2	2	0	-		Rural	1	1900	0.90	3010	3912	0.55	2152	21,519
	2	2	0	-	Minor	Urban	0.9	1900	0.90	2832	3681	0.45	1657	16,566
	2	2	0			Rural	1	1900	0.90	3010	3912	0.45	1761	17,606
	2	2	0		Collector	Urban	0.9	1900	0.99	2990	3887	0.4	1555	15,550
	2	2	0			Rural	1	1900	0.99	3178	4132	0.4	1653	16,526
	3	2	0	5	Principal	Urban	0.9	1900	0.90	4248	5097	0.55	2803	28,034
	3	2	0			Rural	1	1900	0.90	4514	5417	0.55	2980	29,795
	3	2	0]	Minor	Urban	0.9	1900	0.90	4248	5097	0.45	2294	22,937
	3	2	0]		Rural	1	1900	0.90	4514	5417	0.45	2438	24,378
	3	2	0		Collector	Urban	0.9	1900	0.99	4532	5439	0.4	2175	21,755
	3	2	0			Rural	1	1900	0.99	4817	5780	0.4	2312	23,121
N3	1	1	0	2	Principal	Urban	0.9	1900	0.90	1416	1841	0.55	1012	10,124
	1	1	0			Rural	1	1900	0.90	1505	1956	0.55	1076	10,759
	1	1	0		Minor	Urban	0.9	1900	0.90	1416	1841	0.45	828	8,283
	1	1	0			Rural	1	1900	0.90	1505	1956	0.45	880	8,803
	1	1	0		Collector	Urban	0.9	1900	0.99	1433	1863	0.4	745	7,451

Lane Group	Number of Through Lanes (N)	Number of Left Turn Lanes	Number of Right Turn Lanes	Total Number of Through Lanes	Type of Arterial	Area Type	Area Type Adjustment Factor (f _a)	Base Saturation Flow Rate (S _o)	Heavy Vehicle Adjustment Factor (f _{HV})	Saturation Flow Rate for Through Lanes (S)	Total Saturation Flow Rate	Effective Green Ratio (g/C)	Intersection Approach Hourly Capacity (C_A)	Intersection Daily Approach Capacity
	1	1	0	-		Rural	1	1900	0.99	1523	1980	0.4	792	7,919
	2	1	0	3	Principal	Urban	0.9	1900	0.90	2832	3257	0.55	1791	17,911
	2	1	0	-		Rural	1	1900	0.90	3010	3461	0.55	1904	19,036
	2	1	0	-	Minor	Urban	0.9	1900	0.90	2832	3257	0.45	1465	14,654
	2	1	0	-		Rural	1	1900	0.90	3010	3461	0.45	1557	15,575
	2	1	0	-	Collector	Urban	0.9	1900	0.99	2959	3403	0.4	1361	13,612
	2	1	0	-		Rural	1	1900	0.99	3145	3617	0.4	1447	14,467
	3	1	0	4	Principal	Urban	0.9	1900	0.90	4248	4672	0.55	2570	25,698
	3	1	0			Rural	1	1900	0.90	4514	4966	0.55	2731	27,312
	3	1	0		Minor	Urban	0.9	1900	0.90	4248	4672	0.45	2103	21,026
	3	1	0	1		Rural	1	1900	0.90	4514	4966	0.45	2235	22,346
	3	1	0		Collector	Urban	0.9	1900	0.99	4486	4934	0.4	1974	19,736
	3	1	0	1		Rural	1	1900	0.99	4767	5244	0.4	2098	20,976
N4	1	0	1	2	Principal	Urban	0.9	1900	0.90	1416	1557	0.55	857	8,566
	1	0	1			Rural	1	1900	0.90	1505	1655	0.55	910	9,104
	1	0	1]	Minor	Urban	0.9	1900	0.90	1416	1557	0.45	701	7,009
	1	0	1]		Rural	1	1900	0.90	1505	1655	0.45	745	7,449
	1	0	1		Collector	Urban	0.9	1900	0.99	1433	1576	0.4	630	6,305
	1	0	1			Rural	1	1900	0.99	1523	1675	0.4	670	6,701
	2	0	1	3	Principal	Urban	0.9	1900	0.90	2832	2973	0.55	1635	16,353
	2	0	1			Rural	1	1900	0.90	3010	3160	0.55	1738	17,380

Lane Group	Number of Through Lanes (N)	Through Left Turn	Left Turn Right Turn	Right Turn	Right Turn	Right Turn	Total Number of Through Lanes	Type of Arterial	Area Type	Area Type Adjustment Factor (f _a)	Base Saturation Flow Rate (S _o)	Heavy Vehicle Adjustment Factor (f _{HV})	Saturation Flow Rate for Through Lanes (S)	Total Saturation Flow Rate	Effective Green Ratio (g/C)	Intersection Approach Hourly Capacity (C_A)	Intersection Daily Approach Capacity
	2	0	1		Minor	Urban	0.9	1900	0.90	2832	2973	0.45	1338	13,380			
	2	0	1	4		Rural	1	1900	0.90	3010	3160	0.45	1422	14,220			
	2	0	1		Collector	Urban Rural	0.9	1900 1900	0.99	2959 3145	3107 3302	0.4	1243	12,429			
	3	0	1		Principal	Urban	0.9	1900	0.90	4248	4389	0.55	2414	24,141			
	3	0	1		· · ·····pui	Rural	1	1900	0.90	4514	4665	0.55	2566	25,657			
	3	0	1		Minor	Urban	0.9	1900	0.90	4248	4389	0.45	1975	19,752			
	3	0	1			Rural	1	1900	0.90	4514	4665	0.45	2099	20,992			
	3	0	1		Collector	Urban	0.9	1900	0.99	4486	4635	0.4	1854	18,540			
	3	0	1			Rural	1	1900	0.99	4767	4926	0.4	1970	19,704			
N5	1	0	2	3	Principal	Urban	0.9	1900	0.90	1416	1699	0.55	934	9,345			
	1	0	2	-		Rural	1	1900	0.90	1505	1806	0.55	993	9,932			
	1	0	2	-	Minor	Urban	0.9	1900	0.90	1416	1699	0.45	765	7,646			
	1	0	2	-		Rural	1	1900	0.90	1505	1806	0.45	813	8,126			
	1	0	2	1	Collector	Urban	0.9	1900	0.99	1480	1776	0.4	710	7,102			
	1	0	2	-		Rural	1	1900	0.99	1573	1887	0.4	755	7,548			
	2	0	2	4	Principal	Urban	0.9	1900	0.90	2832	3115	0.55	1713	17,132			
	2	0	2	-		Rural	1	1900	0.90	3010	3311	0.55	1821	18,208			
	2	0	2		Minor	Urban	0.9	1900	0.90	2832	3115	0.45	1402	14,017			
	2	0	2			Rural	1	1900	0.90	3010	3311	0.45	1490	14,898			
	2	0	2		Collector	Urban	0.9	1900	0.99	2990	3289	0.4	1316	13,157			

Lane Group	Number of Through Lanes (N)	Number of Left Turn Lanes	Number of Right Turn Lanes	Total Number of Through Lanes	Type of Arterial	Area Type	Area Type Adjustment Factor (f _s)	Base Saturation Flow Rate (S _o)	Heavy Vehicle Adjustment Factor (f _{HV})	Saturation Flow Rate for Through Lanes (S)	Total Saturation Flow Rate	Effective Green Ratio (g;/C)	Intersection Approach Hourly Capacity (C_A)	Intersection Daily Approach Capacity
	2	0	2	5	Principal	Rural	0.9	1900	0.99	3178	3496	0.4	1398	13,984
				5	Principal									,
	3	0	2			Rural	1	1900	0.90	4514	4815	0.55	2648	26,484
	3	0	2		Minor	Urban	0.9	1900	0.90	4248	4531	0.45	2039	20,389
	3	0	2			Rural	1	1900	0.90	4514	4815	0.45	2167	21,669
	3	0	2		Collector	Urban	0.9	1900	0.99	4532	4834	0.4	1934	19,338
	3	0	2]		Rural	1	1900	0.99	4817	5138	0.4	2055	20,552
N6	1	0	1	2	Principal	Urban	0.9	1900	0.90	1416	1557	0.55	857	8,566
	1	0	1		Minor Collector	Rural	1	1900	0.90	1505	1655	0.55	910	9,104
	1	0	1			Urban	0.9	1900	0.90	1416	1557	0.45	701	7,009
	1	0	1			Rural	1	1900	0.90	1505	1655	0.45	745	7,449
	1	0	1			Urban	0.9	1900	0.99	1433	1576	0.4	630	6,305
	1	0	1	-		Rural	1	1900	0.99	1523	1675	0.4	670	6,701
	2	0	1	3	Principal	Urban	0.9	1900	0.90	2832	2973	0.55	1635	16,353
	2	0	1	-		Rural	1	1900	0.90	3010	3160	0.55	1738	17,380
	2	0	1	-	Minor	Urban	0.9	1900	0.90	2832	2973	0.45	1338	13,380
	2	0	1	-		Rural	1	1900	0.90	3010	3160	0.45	1422	14,220
	2	0	1		Collector	Urban	0.9	1900	0.99	2959	3107	0.4	1243	12,429
	2	0	1	-		Rural	1	1900	0.99	3145	3302	0.4	1321	13,209
	3	0	1	4	Principal	Urban	0.9	1900	0.90	4248	4389	0.55	2414	24,141
	3	0	1	-		Rural	1	1900	0.90	4514	4665	0.55	2566	25,657

Lane Group	Number of Through Lanes (N)	Number of Left Turn Lanes	Number of Right Turn Lanes	Total Number of Through Lanes	Type of Arterial	Area Type	Area Type Adjustment Factor (f _a)	Base Saturation Flow Rate (S ₀)	Heavy Vehicle Adjustment Factor (f _{HV})	Saturation Flow Rate for Through Lanes (S)	Total Saturation Flow Rate	Effective Green Ratio (g/C)	Intersection Approach Hourly Capacity (C_A)	Intersection Daily Approach Capacity
	3	0	1		Minor	Urban	0.9	1900	0.90	4248	4389	0.45	1975	19,752
	3	0	1			Rural	1	1900	0.90	4514	4665	0.45	2099	20,992
	3	0	1	-	Collector	Urban	0.9	1900	0.99	4486	4635	0.4	1854	18,540
	3	0	1			Rural	1	1900	0.99	4767	4926	0.4	1970	19,704
N7	1	1	1	3	Principal	Urban	0.9	1900	0.90	1416	1982	0.55	1090	10,902
	1	1	1			Rural	1	1900	0.90	1505	2107	0.55	1159	11,587
	1	1	1		Minor	Urban	0.9	1900	0.90	1416	1982	0.45	892	8,920
	1	1	1			Rural	1	1900	0.90	1505	2107	0.45	948	9,480
	1	1	1		Collector	Urban	0.9	1900	0.99	1480	2071	0.4	829	8,286
	1	1	1			Rural	1	1900	0.99	1573	2202	0.4	881	8,806
	2	1	1	4	Principal	Urban	0.9	1900	0.90	2832	3398	0.55	1869	18,690
	2	1	1			Rural	1	1900	0.90	3010	3612	0.55	1986	19,863
	2	1	1		Minor	Urban	0.9	1900	0.90	2832	3398	0.45	1529	15,292
	2	1	1			Rural	1	1900	0.90	3010	3612	0.45	1625	16,252
	2	1	1	_	Collector	Urban	0.9	1900	0.99	2990	3588	0.4	1435	14,354
	2	1	1			Rural	1	1900	0.99	3178	3814	0.4	1526	15,255
	3	1	1	5	Principal	Urban	0.9	1900	0.90	4248	4814	0.55	2648	26,477
	3	1	1	-		Rural	1	1900	0.90	4514	5116	0.55	2814	28,140
	3	1	1		Minor	Urban	0.9	1900	0.90	4248	4814	0.45	2166	21,663
	3	1	1	_		Rural	1	1900	0.90	4514	5116	0.45	2302	23,023
	3	1	1		Collector	Urban	0.9	1900	0.99	4532	5137	0.4	2055	20,546

Lane Group	Number of Through Lanes (N)	Number of Left Turn Lanes	Number of Right Turn Lanes	Total Number of Through Lanes	Type of Arterial	Area Type		Saturation Flow Rate (S _e)	Heavy Vehicle Adjustment Factor (f _{HV})	Flow Rate for Through Lanes (S)	Total Saturation Flow Rate	Effective Green Ratio (g/C)	Intersection Approach Hourly Capacity (C_A)	Intersection Daily Approach Capacity
	3	1	1			Rural	1	1900	0.99	4817	5459	0.4	2184	21,836
N8	1	2	1	4	Principal	Urban	0.9	1900	0.90	1416	2407	0.55	1324	13,238
	1	2	1		Minor	Rural	1	1900	0.90	1505	2558	0.55	1407	14,070
	1	2	1			Urban	0.9	1900	0.90	1416	2407	0.45	1083	10,831
	1	2	1			Rural	1	1900	0.90	1505	2558	0.45	1151	11,512
	1	2	1		Collector	Urban	0.9	1900	0.99	1495	2542	0.4	1017	10,167
	1	2	1			Rural	1	1900	0.99	1589	2701	0.4	1081	10,806
	2	2	1	5	Principal	Urban	0.9	1900	0.90	2832	3823	0.55	2103	21,026
	2	2	1		Minor	Rural	1	1900	0.90	3010	4063	0.55	2235	22,346
	2	2	1			Urban	0.9	1900	0.90	2832	3823	0.45	1720	17,203
	2	2	1			Rural	1	1900	0.90	3010	4063	0.45	1828	18,283
	2	2	1		Collector	Urban	0.9	1900	0.99	3021	4079	0.4	1632	16,316
	2	2	1			Rural	1	1900	0.99	3211	4335	0.4	1734	17,341
	3	2	1	6	Principal	Urban	0.9	1900	0.90	4248	5239	0.55	2881	28,813
	3	2	1	_		Rural	1	1900	0.90	4514	5568	0.55	3062	30,623
	3	2	1	-	Minor	Urban	0.9	1900	0.90	4248	5239	0.45	2357	23,574
	3	2	1			Rural	1	1900	0.90	4514	5568	0.45	2505	25,055
	3	2	1		Collector	Urban	0.9	1900	0.99	4532	5590	0.4	2236	22,359
	3	2	1			Rural	1	1900	0.99	4817	5941	0.4	2376	23,763
N9	1	1	2	4	Principal	Urban	0.9	1900	0.90	1416	2124	0.55	1168	11,681
	1	1	2			Rural	1	1900	0.90	1505	2257	0.55	1241	12,415

Lane Group	Number of Through Lanes (N)	Number of Left Turn Lanes	Number of Right Turn Lanes	Total Number of Through Lanes	Type of Arterial	Area Type	Area Type Adjustment Factor (f _a)	Base Saturation Flow Rate (S _o)	Heavy Vehicle Adjustment Factor (f _{IIV})	Saturation Flow Rate for Through Lanes (S)	Total Saturation Flow Rate	Effective Green Ratio (g/C)	Intersection Approach Hourly Capacity (C_A)	Intersection Daily Approach Capacity
	1	1	2	-	Minor	Urban	0.9	1900	0.90	1416	2124	0.45	956	9,557
	1	1	2			Rural	1	1900	0.90	1505	2257	0.45	1016	10,157
	1	1	2		Collector	Urban	0.9	1900	0.99	1495	2243	0.4	897	8,971
	1	1	2			Rural	1	1900	0.99	1589	2384	0.4	953	9,534
	2	1	2	5	Principal	Urban	0.9	1900	0.90	2832	3540	0.55	1947	19,468
	2	1	2		Minor Collector	Rural	1	1900	0.90	3010	3762	0.55	2069	20,691
	2	1	2			Urban	0.9	1900	0.90	2832	3540	0.45	1593	15,929
	2	1	2			Rural	1	1900	0.90	3010	3762	0.45	1693	16,929
	2	1	2			Urban	0.9	1900	0.99	3021	3777	0.4	1511	15,107
	2	1	2			Rural	1	1900	0.99	3211	4014	0.4	1606	16,056
	3	1	2	6	Principal	Urban	0.9	1900	0.90	4248	4956	0.55	2726	27,256
	3	1	2			Rural	1	1900	0.90	4514	5267	0.55	2897	28,967
	3	1	2		Minor	Urban	0.9	1900	0.90	4248	4956	0.45	2230	22,300
	3	1	2			Rural	1	1900	0.90	4514	5267	0.45	2370	23,701
	3	1	2		Collector	Urban	0.9	1900	0.99	4532	5288	0.4	2115	21,150
	3	1	2			Rural	1	1900	0.99	4817	5620	0.4	2248	22,479

	Speed	Ideal Capacity (Ex 13-10)	Speed Adjustment	V/C	PHF	Capacity	Daily Capacity
	>50	2,100	1.00	0.9	0.800	1,512	15,120
	>40-50	2,100	0.95	0.9	0.800	1,443	14,433
Urban	>30-40	2,100	0.91	0.9	0.800	1,375	13,745
	>=20- 30	2,100	0.86	0.9	0.800	1,306	13,058
	<20	2,100	0.82	0.9	0.800	1,237	12,371
	>50	2,200	1.00	0.9	0.868	1,719	17,186
	>40-50	2,200	0.95	0.9	0.868	1,641	16,405
Rural	>30-40	2,200	0.91	0.9	0.868	1,562	15,622
	>=20- 30	2,200	0.86	0.9	0.868	1,484	14,843
	<20	2,200	0.82	0.9	0.868	1,406	14,062

Table 26 Calculated Capacities for Ramps