

Refining Binder Selection to Increase Performance Mark D Blow, P.E. - Asphalt Institute

Grading System Based on Climate

PG 58-22

Performance Grade Max pavement design temp

Min pavement design temp

asphalt institute

HWY 32 Pavement Test Sections

Testing Temperature

Performance Grades (AASHTO M320)

The Asphalt Institute National Binder Technician Certification PROGRAM

A Milestine I	- 1: N N - 0 - 0.5 - 5 - 7				
original					
≥230 °C	Flash Point, A	ASHTO T 48			
<u><</u> 3 Pa-s	Rotational Vis	scosity @ 135°C,	AASHTO T 316		
1001/04	DSR G*/sin δ (Dynamic Shear Rheome	ter), AASHTO T 31	5	20
2 1.00 KPa	52	58	64	70	76
RTFO (Re	ling Thin Fil	n Oven), AASI	HTO T 240	- (2	
<u>≤</u> 1.00%	Mass Change				0
2 20 kBa	DSR G*/sin δ (Dynamic Shear Rheome	ter), AASHTO T 31	5	-
22.20 1.14	52	58	64	70	76
PAV (Pres	ssure Aging V	essel), AASHTO) R28		
	90	100	100	100(110)	100(110)
- E000 kBa	DSR G*sin δ (D	ynamic Shear Rheomet	er), AASHTO T 315	Intermediate Temp. =)	({High PG + Low PG)/2] + 4
COUD NP&	25 22 19 16 13 10 7	25 22 19 16 13	31 28 25 22 19 1	6 34 31 28 25 22 1	9 37 34 31 28 25
S ≤ 300 MPa	BBR S (creep	stiffness) & m-v	alue (Bending Be	am Rheometer), AASH	ITO T 313
n ≥ 0.300	0 -6 -12 -18 -24 -36 -3	8 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -3	0 -6 -12 -18 -24 -3	0 0 -6 -12 -18 -24

AASHTO M320 Specification

90 kph (55 MPH)

Example:

- Toll road PG 64-22
- Toll booth PG 70-22

• Weigh stations PG 76-22

Does PG Grading Predict Performance?

Study of the two mixes with the same aggregate structure, but different binders.

PG 64-22 modified, no rutting

PG 67-22 unmodified, 15mm rut

What happened as a result of M 320's inability to fully characterize polymer modified binders?

- Most states began requiring additional tests to the ones required in AASHTO M 320
- These mostly empirical tests are commonly referred to as "PG Plus" tests
- These tests are not standard across the states difficult for suppliers
- Even some of the tests that are the most common, e.g. Elastic Recovery, are not run the same way from state to state

Accelerated Loading Facility (ALF)

- The pavement was heated to a constant 64°C
- The FHWA ALF uses an 18,000 lbs. single wheel load with no wheel wander
- The speed is 12 MPH
- This is a extreme loading condition far more severe than any actual highway

ALF Loading – M 320 vs. M 332

Multiple Stress Creep Recovery Test

- Performed on RTFO-aged Binder
- Test Temperature
 - Environmental Temperature
 - Not Grade-Bumped
- 10 cycles per stress level
 - 1-second loading at specified shear stress
 - 0.1 kPa
 - 3.2 kPa
 - 9-second rest period

Performance Grades (AASHTO M332)

Original		_	_	_	_		
≥230 °C	Flash Point, A	AASHTO T 48					
<u>≤</u> 3 Pa-s	Rotational Vi	Rotational Viscosity @ 135° C, AASHTO T 316					
>100kPa	BOSR G*/sin δ	(Dynamic Shear Rheome	ater), AASHTO T 31	5			
12 Decorde	¥ 52	58	64	70	76		
RTFO (Ro	lling Thin Fil	m Oven), AAS	HTO T 240				
<mark>≤ 1.00%</mark>	Mass Change	Mass Change					
≤ 4.5 kPa ⁻¹	MSCR Jnr, 3.2	(Multiple Stress Creep-	Recovery), AASHT	O T 350			
≤ 2.0 kPa ⁻¹ ≤ 1.0 kPa ⁻¹ ≤ 0.5 kPa ⁻¹	52 E	58	64	70	76		
~ 75%	MSCR Jnr, Diff	(Multiple Stress Creep	Recovery), AASHT	O T 350	-00		
\$75%	¥ 52	58	64	70	76		
PAV (Pres	sure Aging V	OSSOL), AASHTO	D R28				
	90	100	100	100(110)	100(110)		
≤ 5000 kPa ≤ 6000 kPa	BOSR G*sin δ (Dynamic Shear Rheome	or), AASHTO T 315	5 Intermediate Temp, =	((High PG + Low PG)/2)		
≤ 6000 kPa ≤ 6000 kPa	Ě 25 22 19 16 13 10	7 25 22 19 16 13	31 28 25 22 19 1	16 34 31 28 25 22 1	9 37 34 31 28		
S ≤ 300 MPa	BBR S (creep	stiffness) & m-v	alue (Bending Be	am Rheometer), AASH	HTO T 313		
m ≥ 0.300	0 -6 -12 -18 -24 -30 -3	6 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -3	30 0 -6 -12 -18 -24 -3	0 0 -6 -12 -18		

Performance Grades (AASHTO M320)

The Asphalt Institute National Binder Technician Certification PROGRAM

A Milestine I	- 1: N N - 0 - 0.5 - 5 - 7				
original					
≥230 °C	Flash Point, A	ASHTO T 48			
<u><</u> 3 Pa-s	Rotational Vis	scosity @ 135°C,	AASHTO T 316		
1001/04	DSR G*/sin δ (Dynamic Shear Rheome	ter), AASHTO T 31	5	20
2 1.00 KPa	52	58	64	70	76
RTFO (Re	ling Thin Fil	n Oven), AASI	HTO T 240	- (2	
<u>≤</u> 1.00%	Mass Change				0
2 20 kBa	DSR G*/sin δ (Dynamic Shear Rheome	ter), AASHTO T 31	5	-
22.20 1.14	52	58	64	70	76
PAV (Pres	ssure Aging V	essel), AASHTO) R28		
	90	100	100	100(110)	100(110)
- E000 kBa	DSR G*sin δ (D	ynamic Shear Rheomet	er), AASHTO T 315	Intermediate Temp. =)	({High PG + Low PG)/2] + 4
COUD NP&	25 22 19 16 13 10 7	25 22 19 16 13	31 28 25 22 19 1	6 34 31 28 25 22 1	9 37 34 31 28 25
S ≤ 300 MPa	BBR S (creep	stiffness) & m-v	alue (Bending Be	am Rheometer), AASH	ITO T 313
n ≥ 0.300	0 -6 -12 -18 -24 -36 -3	8 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -3	0 -6 -12 -18 -24 -3	0 0 -6 -12 -18 -24

Performance Grades (AASHTO M332)

Original		_	_	_	_		
≥230 °C	Flash Point, A	AASHTO T 48					
<u>≤</u> 3 Pa-s	Rotational Vi	Rotational Viscosity @ 135° C, AASHTO T 316					
>100kPa	BOSR G*/sin δ	(Dynamic Shear Rheome	ater), AASHTO T 31	5			
12 Decorde	¥ 52	58	64	70	76		
RTFO (Ro	lling Thin Fil	m Oven), AAS	HTO T 240				
<mark>≤ 1.00%</mark>	Mass Change	Mass Change					
≤ 4.5 kPa ⁻¹	MSCR Jnr, 3.2	(Multiple Stress Creep-	Recovery), AASHT	O T 350			
≤ 2.0 kPa ⁻¹ ≤ 1.0 kPa ⁻¹ ≤ 0.5 kPa ⁻¹	52 E	58	64	70	76		
~ 75%	MSCR Jnr, Diff	(Multiple Stress Creep	Recovery), AASHT	O T 350	-00		
\$75%	¥ 52	58	64	70	76		
PAV (Pres	sure Aging V	OSSOL), AASHTO	D R28				
	90	100	100	100(110)	100(110)		
≤ 5000 kPa ≤ 6000 kPa	BOSR G*sin δ (Dynamic Shear Rheome	or), AASHTO T 315	5 Intermediate Temp, =	((High PG + Low PG)/2)		
≤ 6000 kPa ≤ 6000 kPa	Ě 25 22 19 16 13 10	7 25 22 19 16 13	31 28 25 22 19 1	16 34 31 28 25 22 1	9 37 34 31 28		
S ≤ 300 MPa	BBR S (creep	stiffness) & m-v	alue (Bending Be	am Rheometer), AASH	HTO T 313		
m ≥ 0.300	0 -6 -12 -18 -24 -30 -3	6 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -3	30 0 -6 -12 -18 -24 -3	0 0 -6 -12 -18		

MSCR PG Grading System (AASHTO M 332)

- Environmental grade plus traffic level designation; i.e. PG 64E-22
 - Four traffic levels
 - S = Standard: < 10 million ESALs <u>and</u> standard traffic loading
 - H = Heavy: 10 30 million ESALs <u>or</u> slow moving traffic loading
 - V = Very Heavy: > 30 million ESALs <u>or</u> standing traffic loading
 - E = Extra Heavy: > 30 million ESALs <u>and</u> standing traffic loading

For More Binder Information

MS-25

asphalt institute

MS-26

MS-26

Is a PG a Modified Binder?

Effect of Loading Rate

Reliability

"Rule of 92"

PG 64 - 34 => 64 - - 34 = 98 Probably modified Depends on asphalt source

Rounding

Effect of Traffic

What are we looking for-Price or **Performance?**

LTPP Studies

Quantifying the Effects of PMA for Reducing Pavement Distress

This study (published in Feb 2005) used national field data to determine enhanced service life of pavements containing polymer modified binders versus conventional binders. The data is from a variety of climates and traffic volumes within North America.

IS-215 Survey Data

Table 1. Su	Table 1. Summary of Reasons Why Agencies Use PMA Mixtures						
Reason for Using PMA Mix	Rutting	Thermal Cracking	Fatigue Cracking	Stripping, Moisture Damage	Durability	Raveling	Tenderness
Primary	58%	21%	0%	0%	0%	0%	0%
Secondary	37%	47%	0%	21%	47%	11%	11%
Total	95%	68%	0%	21%	47%	11%	11%

IS-215 Rut Depth Data

IS-215 Fatigue Cracking Data

asphalt institute

re 2 Graphical comparison of the fatigue cracking measured in percent wheel path area on sections with PMA and the companion sections – those without PMA mixtures.

IS-215 Thermal Cracking Data

asphalt institute

Summary of Expected Increase in Service Life, Years, Based on M-E Damage Based Analysis asphalt institute

Assumptions: Unmodified sections designed for 20 yr. life. Also, PMA in top 4 inches.

Site Factor		Condition Description	Added Life
	Non-ex	xpansive, coarse soils	5-10
Foundation	Expan	sive and plastic soils (PI>35)	2-5
	Frost S	Susceptible in cold climate	2-5
	Deep		5-10
Water Table	Shallo	w; adequate	5-8
& Drainaye	Shallo	w; inadequate	0-2
Existing Pavement Condition	НМА	Good	5-10
		Poor-extensive cracking	1-3
	DCC	Good	3-6
	PUU	Poor-faulting & cracking	0-2

Continued: <u>Summary</u> of Expected Increase in Service Life, <u>ArShalt institute</u>

Assumptions: Unmodified sections designed for 20 yr. life. Also, PMA in top 4 inches.

Site Factor	Condi	Added Life	
Climate;	Hot	Hot Extremes	5-10
Temp.	Mild		2-5
Fluctuations	Cold	Cold Extremes	3-6
		Intersections	5-10
T (() T ()	Low	Thoroughfares	3-6
Volumos		Heavy Loads	5-10
Volumes	Moderate		5-10
	High		5-10

Is this reliable info?

asphalt institute

- Yes, the information, analysis and results are accurate
- These projects were part of SHRP's LTPP program
- They were well designed and well built
- It shows what we can achieve when we do things right.

We make a lot of assumptions in our business

PMS is critical

We need to:

- Have accurate condition ratings
- Account for pavement materials
- Have uniform construction processes

Another Way?

Is there another way to analyze value?

I believe there is.

When was the last time you painted your house or fence?

What do binders cost?

asphalt institute

2020 NDDOT Ave. Unit Bid Prices

Descrip	tion	Unit	Total Quantity	Average Bid Price
PG 58S-28	Asphalt Binder	Ton	40,033	\$448.80
PG 58H-28	Asphalt Binder	Ton	23,178	\$502.93
PG 58S-34	Asphalt Binder	Ton	2,439	\$508.54
PG 58H-34	Asphalt Binder	Ton	667	\$506.00
PG 58E-34	Asphalt Binder	Ton	329	\$812.98

Highest to Lowest Difference = \$59.74 or \$364.18 per binder ton? @ 6% Binder = \$3.58 / ton of mix for 58S-34

Simple County overlay

10 mile overlay, No milling

Original Contract Amount	\$ 1,500,814.57
1,575.5 contract binder Tons @ \$462.07/ton	\$ 727,991.29
1,575.5 Tons X \$59.74 per ton increase	\$ \$94,120.37
Increase in Project Cost	6.27%

Years needed to recover additional 6.3% expenditure				
10 year assumed life	7.5	months		
20 year assumed life	15.1	months		

Complicated Interstate overlay asphalt institute

20 + mile overlay, extensive traffic control, underdrains, etc.

Original Contract Amount	\$ 22,565,024.00
12,976.4 contract binder Tons @ \$425.78/ton	\$ 5,525,138.00
12,976.4 Tons X \$59.74 per ton increase	\$ 775,210.14
Increase in Project Cost	3.44%

Years needed to recover additional 3.44% expenditure				
10 year assumed life	4	months		
20 year assumed life	8	months		

Small Town Urban / Grading

asphalt institute

1 mile 3-Lane, grading, C&G, sidewalks, lighting and new asphalt surface

Original Contract Amount	\$3,521,707.00
9518.5 Ton recycled mix bid @ 4.7% binder	
447.7 contract binder Tons @ \$730.00/ton	\$326,821.00
571.1 (6%) virgin binder Tons X \$789.74 per ton	\$451,020.51
Project Binder cost increase	\$124,199.51
Increase in Project Cost	3.52%

Years needed to recover additional 3.52% expenditure				
10 year assumed life	4.2	months		
20 year assumed life	8.4	months		

In Conclusion

asphalt

A few parting thoughts on increasing pavement performance

New Construction

- asphalt institute
- Use the proper -xx binders to prevent thermal cracking!
- 25 year old SHRP recommendation.

LTPPBind v3.1 https://infopave.fhwa.dot.gov/Page/Index/LTPP_BIND

On overlays

Consider higher performance binders on overlays

- Reduced rutting
- Reduced cracking
- Better crack seal performance
- Maintain existing crack resistance
 Example Do not place an overlay with -22 binder on a pavement built with a -34 binder.

Better Joint Performance

Interstate Saw and Seal

- Orig. 1962 PCC
- 1999 3" HMA
- 2004 1.5" SMA ✓PG 70-28
- 2004 Saw/Seal
- 2009 Sealed secondary cracks
- Photo taken in 2018

Consider reducing the # of grades

2020 NDDOT Ave. Unit Bid Prices

430	5803	PG 58S-28 ASPHALT CEMENT	46,033.00	\$20,659,811.90	\$448.80 TON
430	5806	PG 58H-28 ASPHALT CEMENT	23,178.80	\$11,657,341.53	\$502.93 TON
430	5815	PG 58S-34 ASPHALT CEMENT	2,439.03	\$1,240,338.00	\$508.54 TON
430	5818	PG 58H-34 ASPHALT CEMENT	8,987.50	\$4,547,712.50	\$506.00 TON
430	5824	PG 58E-34 ASPHALT CEMENT	667.00	\$542,258.75	\$812.98 TON
430	5828	PG 58-28 ASPHALT CEMENT	329.00	\$172,725.00	\$525.00 TON

2020 SDDOT Ave. Unit Bid Prices

320E0005	PG 58-34 Asphalt Binder	Ton	42,859.80	23,960,780.48	559.05
320E0007	PG 64-28 Asphalt Binder	Ton	871.50	579,453.00	664.89
320E0008	PG 64-34 Asphalt Binder	Ton	28,463.80	17,062,417.81	599.44

Thank you

