

Enhanced Durability Through Increased In-Place Pavement Density

ASPHALT INSTITUTE

Mark D. Blow, P.E.

Sr. Regional Engineer

Understanding the Importance of Density

Evolution of Traffic

- Interstate highways 1956
- AASHO Road Test 1958-62
 - still widely used for pavement design
 - legal truck load 73,280 lbs.
- Legal load limit to 80,000 lbs. 1982
 - 10% load increase
 - 40-50% greater stress to pavement
- Radial tires, higher contact pressure
- FAST Act raising load limit to 120,000 lbs. (in select locations)

Led to Rutting in 1980s

Which led to...Superpave

- Fixed the rutting problem
- Gyratory compaction lowered binder contents
- Add in higher and higher recycled materials?

Linking Density to Pavement Durability

Improved Compaction = Improved Performance

A BAD mix with GOOD density out-performed a GOOD mix with POOR density for ride and rutting.

WesTrack Experiment

Density vs. Loss of Pavement Service Life

For both thicker and thinner, reduced in-place density at the time of construction results in significant loss of Service Life!

In-Place Voids vs Fatigue Life

1.5% increase leads to 10% increase in

asphalt institute

Performance Tests @ 7% Air Voids

Tensile Strength & Moisture Susceptibility vs. Air Voids AASHTO T 283

Sample Air Voids

Asphalt Institute Research

NCAT Report 16-02 (2016)

Literature Review on connecting in-place density to performance

- 5 studies cited for fatigue life
- 7 studies cited for rutting
 - "A 1% decrease in air voids was estimated to improve the fatigue performance of asphalt pavements between 8.2 and 43.8%, to improve the rutting resistance by 7.3 to 66.3%, and to extend the service life by conservatively 10%."

Research from New Jersey

asphalt institute

Permeability can be Catastrophic

NCAT Permeability Study

Finer NMAS mixes generally less permeable at equivalent air void levels!

From NCAT Report 03-02

Mix Design Properties that Affect Compactibility and Durability

Mixture Factors Affecting Compaction

- Mix Properties
 - Aggregate
 - Gradation
 - Angularity
 - Asphalt Cement
 - Grade
 - Quantity
 - Volumetrics
 - Air Voids
 - VMA
 - VFA
 - Balancing a Mix

Choosing a Gradation

Courtesy of NCAT

asphalt institute

NCAT Test Track 1st Cycle

Larger Aggregate Size ≠ Increased Strength

Coarse, intermediate, and fine gradations. No differences in rutting performance!

Courtesy of NCAT

Choosing a Gradation

asphalt institute

Finer Gradations

Courtesy of NCAT

Effect of Aggregate on Compaction

• **GRADATION**

- continuously-graded, gap-graded, etc.

• SHAPE

- flat & elongated, cubical, round

• SURFACE TEXTURE

- smooth, rough

• STRENGTH

- resistance to breaking, abrasion, etc.

"Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure."

Balanced Mix Design Approach

asphalt institute

- General Procedure
 - Design and test mix for Rutting
 - Test mix for Cracking and/or Durability
 - Performance Testing
- States that are using this approach
 - Texas
 - Louisiana
 - New Jersey
 - Illinois
 - California
 - Wisconsin

New Jersey Balanced Design

Courtesy of Tom Bennert

FHWA Performance Based Mix Design

	Fatigue Cracking	Rutting	
Design Air Voids For every 1% increase	40% increase	22% decrease	
Design VMA For every 1% increase	73% decrease	32% increase	
Compaction Density For every 1% lower in-place Air Voids (Increasing Density Improved Both!)	19% decrease	10% decrease	

asphalt institute

Why are the target values for lab-molded air voids and roadway air voids different? Lab-molded air voids simulate the in-place density of HMA after it has endured several years of traffic in the roadway.

Superpave 5 – Purdue Research

- Design at 5% air voids and compact to 5% voids in field (95% G_{mm})
- Lower design gyration to increase in-place density
 - No change in rutting resistance
 - No change in stiffness
 - Improve pavement life
 - Reduced aging
- Maintained Volume of Eff. Binder (V_{be})
 - Increased VMA by 1%

Factors Affecting Compaction

Lift Thickness Effect on Compaction

- Aggregates need room to densify
- Too thin vs. NMAS leads to:
 - Roller bridging
 - Aggregate lockup
 - Aggregate breakage
 - Compaction Difficulties

Superpave Designation	Nom Max Size, mm	Max Size, mm		
37.5 mm	37.5	50.0		
25.0 mm	25.0	37.5		
19.0 mm	19.0	25.0		
12.5 mm	12.5	19.0		
9.5 mm	9.5	12.5		

NMAS grading <u>is different</u> than older "Topsize" Grading Old Rule of Thumb - Minimum lift thickness = 2x Topsize

- ✓ NCHRP Report 531 (2004)
 - Thicker lifts are easier to compact
 - Cool slower, providing longer compaction time
 - Reduce paver speed

NMAS - Minimum compacted thickness

✓4 times nominal aggregate size

✓3 times nominal aggregate size for fine graded mixtures
Minimum - NOT MAXIMUM !

Design Problems

- asphalt institute
- The job mix formula (JMF) typically requires a gradation be developed that meets the specifications.
- Field production gradation tolerances are then applied to the JMF to account for variations during production.
- Lift thickness that meet the minimum guidelines for the specified mixture NMAS are often selected during project design.
- If the JMF falls at the lower limit of the gradation specified for the NMAS mix selected, and
- The field production goes coarse as allowed by the production tolerances,
- The actual NMAS placed is different than that specified in the plans
- This can result in poor placement, compaction and durability

Wisconsin DOT Specified Mix Gradations

Standard Superpave Gradation Recommendations

	PERCENT PASSING DESIGNATED SIEVES										
SIEVE	NOMINAL SIZE										
	No. 1	No. 2	No.3	No. 4	No. 5	SMA No. 4	SMA No. 5				
	(37.5 mm)	(25.0 mm)	(19.0 mm)	(12.5 mm)	(9.5 mm)	(12.5 mm)	(9.5 mm)				
50.0-mm	100										
37.5-mm	90 - 100	100									
25.0-mm	90 max	90 -100	100								
19.0-mm		90 max	90 -100	100		100					
12.5-mm			90 max	90 -100	100	90 - 97	100				
9.5-mm				90 max	90 -100	58 - 72	90 - 100				
4.75-mm					90 max	25 - 35	35 - 45				
2.36-mm	15 - 41	19 - 45	23 - 49	28 - 58	32 - 67	15 - 25	18 - 28				
75-µm	0 - 6.0	1.0 - 7.0	2.0 - 8.0	2.0 - 10.0	2.0 - 10.0	8.0 - 12.0	10.0 - 14.0				
% MINIMUM VMA	11.0	12.0	13.0	14.0[1]	15.0 ^[2]	16.0	17.0				

TABLE 460-1 AGGREGATE GRADATION MASTER RANGE AND VMA REQUIREMENTS

^[1] 14.5 for LT and MT mixes.

^[2] 15.5 for LT and MT mixes.

NYSDOT - Marshall Mix Gradations

TABLE 403-1 COMPOSITION OF HOT MIX ASPHALT MIXTURES												
Mixture	Base				Binder		Shim		Top ^{3,4}			
Require- ments ¹	Type 1 Type 2		Type 3 Type 5		Type 6, 6 6F3		6F2,	F2, Type 7, 7F2, 7F3				
Screen Sizes	General limits % Passing	Job Mix Tol. %										
50.0 mm	100	-	100	-	-	-	-	-	-	-	-	-
37.5 mm	90 -100	-	75 - 100	7	100	-	-	-	-	-	-	-
25.0 mm	78 - 95	5	55 - 80	8	95 - 100	-	-	-	100	-	-	-
12.5 mm	57 - 84	6	23 - 42	7	70 - 90	6	-	-	95-100	-	100	-
6.3 mm	40 - 72	7	5 - 20	6	48 - 74	7	100	-	65 - 85	7	90 -100	
3.2 mm	26 - 57	7	2 - 15	4	32 - 62	7	80 - 100	6	36 - 65	7	45 - 70	6
850 µm	12 - 36	7	-	-	15 - 39	7	32 - 72	7	15 - 39	7	15 - 40	7
425 µm	8 - 25	7	-	-	8 - 27	7	18 - 52	7	8 - 27	7	8 - 27	7
180 µm	4 -16	4	-	-	4 - 16	4	7-26	4	4 - 16	4	4 - 16	4
75 μm PGB	2 - 8	2	-	-	2 - 8	2	2-12	2	2-6	2	2 - 6	2
Content,	4.0 - 6.0	0.4	2.5 - 4.5	0.4	4.5 - 6.5	0.4	7.0-9.5	0.4	5.4-7.0	NA	5.7 -8.0	NA

Ex. - FAA P-401 Gradation Specs.

AGGREGATE - BITUMINOUS PAVEMENTS

Sieve Size	Percentage by Weight Passing Sieves							
	1-1/4"max	1"max	3/4"max	1/2"max				
1-1/4 in. (30.0 mm)	100							
1 in. (24.0 mm)	86-98	100						
3/4 in. (19.0 mm)	68-93	76-98	100					
1/2 in. (12.5 mm)	57-81	66-86	79-99	100				
3/8 in. (9.5 mm)	49-69	57-77	68-88	79-99				
No. 4 (4.75 mm)	34-54	40-60	48-68	58-78				
No. 8 (2.36 mm)	22-42	26-46	33-53	39-59				
No. 16 (1.18 mm)	13-33	17-37	20-40	26-46				
No. 30 (0.600 mm)	8-24	11-27	14-30	19-35				
No. 50 (0.300 mm)	6-18	7-19	9-21	12-24				
No. 100 (0.150 mm)	4-12	6-16	6-16	7-17				
No. 200 (0.075 mm)	3-6	3-6	3-6	3-6				
Asphalt percent:								
Stone or gravel	4.5-7.0	4.5-7.0	5.0-7.5	5.5-8.0				
Slag	5.0-7.5	5.0-7.5	6.5-9.5	7.0-10.5				

NMAS in SGC Experiment

12.5 mm Limestone mix @ 75 gyrations

9.5 mm crushed gravel @ 75 gyrations
Lift Thickness

Lift Thickness

Thin lift overlays require finer mixture types!!

Superpave Mix Designations

Superpave Mix Designations	Maximum Size	Minimum Compacted Lift Thickness (Fine)	Minimum Compacted Lift Thickness (Coarse)
37.5 mm (1-1/2 inch)	50.0 mm (2 inch)	112.5 mm (4-1/2 inch)	150 mm (6 inch)
25.0 mm (1 inch)	37.5 mm (1-1/2 inch)	75 mm (3 inch)	100 mm (4 inch)
19.0 mm (3/4 inch)	25.0 mm (1 inch)	57 mm (2-1/4 inch)	76 mm (3 inch)
12.5 mm (1/2 inch)	19.0 mm (3/4 inch)	37.5 mm (1-1/2 inch)	50 mm (2 inch)
9.5 mm (3/8 inch)	12.5 mm (1/2 inch)	28.5 mm (1-1/8 inch)	38 mm (1-1/2 inch)
4.75 mm (3/16 inch)	9.5 mm (3/8 inch)	14.25 mm (9/16 inch)	19 mm (3/4 inch)

Thicker lifts are easier to compact !!

Effect of Temperature on Compaction

Material Cooling

- Thicker = More Time for Compaction
- Free tools for estimating compaction time
 - PaveCool—single lift (generation 1)
 - PC
 - iOs App
 - Google App
 - MultiCool—multiple lifts (generation 2)
 - PC
 - Google App
 - Mobile Web

PaveCool Example

- Key Inputs
 - Temperature
 - Air
 - Base
 - Mix Delivery
 - Wind Speed
 - Lift Thickness

- Output
 - Cooling Curve
 - Estimated Compaction Time

PaveCool 2.4 - Pavement Cooling Program	
File View Options Help	
Project Title: 1-35 Norman	
Start Date/Time Mix Specifications 10/12/2009 ▼ 11:16 AM Update to Current Time Update to Current Time Binder Grade Environmental Conditions Binder Grade Air Temperature 70 °F Wind Speed 5 mph Sky Clear & Dry Sky Clear & Dry Lift Thickness Latitude 35 °N Existing Surface 300 ÷ °F Material Condition Image: Start Rolling: 0 Surface Temperature 65 °F Units Recommended Times: SI Start Rolling: 0 Mix Specifications minutes after laydown Disclaimer Export Data	Cooling Curve HMA Temperature, "F 320 300 300 280 280 260 240 200 180 160 140 0 20 40 60 80 100 120 Time, minutes
	- hune
Reduy	

PaveCool Example

120

NUM

Disclaimer

Ready

Export Data

111

Paving Goals

- Continuous Operations
 - Hot plant running nonstop
 - Paver running at constant speed nonstop
- Production = Hauling = Paver Processing = Compaction Speed

Achieving Density on HMA Joints

Longitudinal Joints

We Know Unsupported Edge Will Have Lower

Please note Cold side and Hot side, as they are terms used throughout this Workshop.

2006-2007, with 6^{49} cores taken over joint

asphalt institute

Air void & Permeability research says 6-7% P_a needed

> Past standard joint construction practices reach 9-10%

Dilemma at the Joint

The Pennsylvania Example

Joint Issues In PA

PA Joint Density Spec Highlights

- Both type of LJs allowed (butt or notch wedge)
- Joint Lot = 12,500'. Core every 2,500'. 5 cores per lot.
- Core location
 - For Butt: directly over visible joint
 - For Notch Wedge: middle of wedge
- Percent Within Limits (PWL)
 - Incentive starts at 80% PWL
 - Disincentive at <50% PWL
- Lower Specification Limit
 - 2010-2013: 89% TMD
 - 2014-2015: 90% TMD
- Corrective action for < 88% TMD

PA: How Did it Work?

In-place Density Summary, Reported by PA DOT

Year	# Lots	Avg. Roadway Density, %TMD	Avg. Joint Density, %TMD	
2007	18	93.9	87.8	begin measuring at Jt.
2008	43	94.1	88.9	method spec
2009	29	94.1	89.2	method spec
2010	No data, transition to PWL spec			
2011	137	94.1	91.0	PWL, LSL 89%
2012	162	94.0	91.6	PWL, LSL 89%
2013	167	93.9	91.4	PWL, LSL 89%
2014	316	94.1	92.3	PWL, LSL 90%
2015	493		92.6	PWL, LSL 90%

PA: Increased Projected Life of Joints Due to Improved Joint Density

asphalt institute

PA: Annual Statewide Totals on Incentives/Disincentives for Joint Density asphalt institute

Year	Incentive Payments	Disincentive Payments
2011	\$268K	\$99K
2012	\$489K	\$63K
2013	\$588K	\$25K
2014	\$1,002K	\$127K

Note: MI and CT have averaged over 91.5%, and AK over 92.0% density at the joint over recent construction seasons

Constructing a Quality Longitudinal Joint

- Types of LJs
- Planning for the Joint
- Placement and Rolling

Use best practices for paving previously discussed!

The Best Longitudinal Joint: Echelon Paving

295 New Jersey

INTERSTATE

HYPAC

Rolled Hot

HYPAC

But, the need to maintain traffic limits the opportunities to pave in echelon

Consequently, most longitudinal joints are built with a cold joint. 59

Preferred Joint Type? Experts Evenly Divided.

Wedge Joints A

and Compaction

Average Joint Densities from PA DOT for Entire Paving Season

	2011	2012	2013
Notched Wedge	91.7%	91.7%	"mostly notched
Butt (vertical)	90.3%	90.7%	wedge joints"

Plan for Longitudinal Joints...

- (i.e. Discuss During Pre-Con Meeting)
 - > Joint Type
 - Layout Plan of Final Lift showing joints (DelDOT)
 - Recognize need to offset joints between layers
 - Avoid wheel paths, RPMs, striping (if possible)
 - Testing of Joint
 - Type, location, schedule, by whom
 - Joint Construction Practices
 - Paving, rolling, materials

asphalt inst

- Pave low to high when possible for shingle effect
 - Avoids holding rain water at joint by hot side being slightly higher (recommendation later)

Poor planning – joint in wheelpath

First Pass Must Be Straight! asphalt institute

string-line should be used to assure first pass is straight

Stringline for reference, and/or Skip Paint, Guide for following

Great Results

Tough to get proper overlap (1") with next pass

Best Way to Roll an Asphalt Joint

So Our Recommendation: Option 1_{asphalt} institute

1st Roller Pass Hangs Over 4-6 inches

Compacting Notched Wedge

Wheel compactor

asphalt institute

Paint the Side of Joint (Butt or Wedge)

Emulsion (Good),

Or Joint Adhesive (JA) (Best)

PG Asphalt

(Better),

institute

J-Band / VRAM

J-Band / VRAM

Hot Side Pass Placement

When Closing Joint, Set Paver Automation to Never Starve the Joint of Material

- Target final height difference of +0.1" on hot-side versus cold side
 - NH spec requires 1/8" higher
- Joint Matcher (versus Ski) is best option to ensure placing exact amount of material needed
- If hot-side is starved, roller drum will "bridge" onto cold mat and no further densification occurs at joint

Ski Best for Smoothness (reference is average over length of ski)

Versus Joint Matcher, which is best for joint (reference is exact location just in front of auger)

Destined for Failure

Likely that the hot side of joint was starved of material at these locations and bridging occurred.

Proper Overlap:

- 1.0 <u>+</u> 0.5 inches
- Exception: Milled or sawed joint should be 0.5 inches

All Photos show Bottom of Lift (Note voids in top two from no overlap)

Core #2 (No Overlap)

Core #7 (No Overlap)

Core #9 (Overlap 1 ½")

Core #10 (Overlap 1 ½")

Lute the Longitudinal Joint

AP-1055

This lute person is doing a great job

Rolling the Supported Edge

Our Recommendation:

1st pass all on hot mat with roller edge off joint approx 6-12 inches

2nd pass overlaps on cold mat 3-6 inches

Other Options / New Products

- Mill & Pave One Lane at a Time
- Cut Back joint
- Joint Heaters
- Joint Adhesives (hot rubberized asphalt)
- Surface Sealers Over Joint
- Rubber Tire Rollers
- Warm Mix Asphalt
- Intelligent Compaction

Details provided in full workshop

GOAL 14 year old surface

I-65 in IN: SR252 to US31
12 inches HMA over Rubblized JCP
Warranty Project

53395

Discuss the Importance of Tack Coats

Tack Coat's Role in Compaction

asphalt institute

Tack Coat Plays an Important Role in the Compaction Process

Tack Coat's Role in Compaction

Good bond between underlying and the new layer being compacted is critical to "confine" the bottom of the new lift and keep it from sliding during rolling.

asphalt institute

Successful Tack Coat

The Ultimate Goal:

Uniform, complete, and adequate coverage

Importance of Tack Coats

- asphalt institute
- To promote the bond between pavement layers.
 - To prevent slippage between pavement layers.
 - Vital for structural performance of the pavement. (Durability)
 - Resist rutting.
 - Achieve optimum density.

Loss of Fatigue Life Examples

- May & King:
 - 10% bond loss = 50% less fatigue life
- Roffe & Chaignon
 - No bond = 60% loss of life
- Brown & Brunton
 - No Bond = 75% loss of life
 - 30% bond loss = 70% loss of life

asphalt institute

Consequences of Debonding

Courtesy of NCAT

Application Rates?

asphalt institute

• What is the Optimal Application Rate?

- Surface Type
- Surface Condition

Recommended Ranges

Surface Type	Residual Rate (gsy)	Appx. Bar Rate Undiluted [*] (gsy)	Appx. Bar Rate Diluted 1:1 [*] (gsy)
New Asphalt	0.02 - 0.05	0.03 - 0.07	0.06 - 0.14
Existing Asphalt	0.04 - 0.07	0.06 - 0.11	0.12 - 0.22
Milled Surface	0.04 - 0.08	0.06 - 0.12	0.12 - 0.24
Portland Cement Concrete	0.03 – 0.05	0.05 – 0.08	0.10 - 0.16

*Assume emulsion is 33% water and 67% asphalt.

Additional Resources

http://www.asphaltinstitute.org/tack-coatinformation/

Taox Coat Deformation:	-+ X							
CADW	www.asphaltinstitute.org/tack-coat-ini	ormation/						0 🖬 🗉
ya 👷 Rovierania 🗄	🗴 choopie 🤐 Encounted Front Firef 🛛 🥁 2-6	etter Winds a Win - 🙀 My Yahio	👖 🖬 Jason Christ, Haribar I.	🖸 lagartad 📑 Terminal Balletics	Precisional and Sugar	🕤 (bet Röpper, Mitteije) -	Courts Free Color-Co	a 🛄 Other (social marks
	About Us Members Only	Our Members Become a M	onter Specification Dat	labores		Q Search		
	asphalt Serving the resets of result active requirem version from the 1979.	institute			NOTICE The Asphan maintenance April 2 during this time. We Indented Weather 3	Entitude website with 2 - 24 and may be in applicate for any in information 20	l be undergoling scoostble smyeniesce	
	Research & Lab	Engineering	Education	ASPHALT magazine	Store			
			Tack Coat	Information	h			
	Tack coats are a vital co- layer. Poor tack coat ap- coat is slippage cracks (C) often poor tack coat can poor tack being recogniz strength (10-30%). fatg be quite farge, potential tack coat operations by I	inconent of an asphalt lipication results in poor ypically at locations will lead to more classic st ed as the source of the use life can be reduced y owne exceeding the soth contractors and th	pavement's structur bonding of the aspl here traffic is brokin ructural pavement d see early failures. In significantly (50-70 viginal costs of a m ie agencies, and pav	ral system as they bond th salt layers. The usual pave g or accelerating) along wi listnesses, namely fatigue fact, researchers have ind %). Norecver, the cost to aintenance overlay. Despit umment performance suffer	e multiple asphalt I ment distresses as in determination of 1 cracking and pothol licated that even wi an agency in the ev- e these facts. Rttle- rs.	its into one mono sociated with poor the surface lift. By les, commonly will th a small loss in vent of a bonding attention is often	lithic or no tack it quite hout the bond failure can paid to	
	Trying to aid state Depar Administration (FHWA) a information on tack coat	tments of Transportat nd the Asphalt Institut s and emphasizes the i	ion in the construction in the construction in the produced a four-the importance of provide	on of better built and long our workshop on this topic ling a long lasting bond be	or lasting pavement c. The workshop pro tween asphalt layer	s, the Federal Hig wides the most c. %-	hway arrent	
	TOPICS INCLUE	DE:						
	The Importance of Tax Tack Cost Materials, S Tack Cost Specification	k Coats election, and Handling ns					25	

http://www.fhwa.dot.gov/pavement/asphalt /pubs/hif16017.pdf

Tech Brief	Tack Cost Best Practices The Cost Best Practi				
The program are at additional for additional and impacts of providence and additional for the standard and the standard additional additional additional and additional additional additional additional additional additional additional additional additional additional Additional additional Additional additional Additional additional Addition	This there is an injuries degletation of or applied before upon a first instrumentary and the information correspondence processing of the information of the informa				
And Title	HRP	NATIONAL COORRATIVE HIGHWAY HIGHWAY HISEARCH			
Optimiza fo	REPORT 712 ttion of Tack Coat r HMA Placement	PROGRAM			
TRANSP	ORTATION RESEARCH BOARD- OF ME ANIQUE ADDRESS				

http://store.asphaltpavement.org/index. php?productID=786 http://onlinepubs.trb.org/onlinepubs/nchrp/ nchrp_rpt_712.pdf

NYSDOT - 50 vs. 60 Series

	50 Series	60 Series
Specification Type	PWL	Average
Incentives	Yes	No
Disincentives	Yes	Yes
Acceptance Measurement	Cores	Gauge Readings
Use	Interstates/Parkways	Non-interstate routes

NYSDOT – 50 vs. 60 series

Newer Technologies to Enhance Compaction

Newer Technologies to Enhance Compaction

- Warm Mix Asphalt (WMA)
- SHRP2 Infrared (IR)
- Intelligent Compaction (IC)

Wrap Up

Maximizing Our R.O.I.

asphalt institute

- Infrastructure loads continue to rise
- Budget availability continues to fall
- Increased pavement life can be economically achieved
- Research conservatively shows that a 10% increase in pavement life can be achieved by increasing compaction by 1%.

What would a 3% increase in compaction do for our industry?

- asphalt institute
- Finer aggregate gradations are less permeable
 - May require higher level consensus properties
 - May require higher binder contents
- Design to a **minimum** lift thickness
 - \geq 3X NMAS on fine graded mixtures
 - ≥ 4X NMAS on coarse graded mixtures
- Do not neglect future pavement preservation

Proper Tack Coat Application

- Specify and monitor adequate tack coat application
 - Allow the use of alternate materials
 - Low Tracking tack
 - Modified materials
 - Paving grade binders

A well compacted pavement section will not perform if it is not properly bonded!!

Improve Longitudinal Joints

Permeable Longitudinal Joints will:

- Cause safety concerns
- Necessitate premature maintenance
- Contribute to delamination
- Severely impact the life cycle performance
- Joint density no less than 2% mat density requirement

asphalt institute

Specify Increased Compaction

- Shoot for 94% TMD
 - Regularly achieved on airfields throughout the country.
- Use Percent Within Limit specifications
 - A 92% LSL demands 93 94% compaction target
 - Use a one sided test LSL only
 - Consider high side outlier testing
- Assure Density is achieved on the road
 - Consider Cores for acceptance
 - Require adequate gauge calibration
 - Regularly determine G_{mm} on plant produced mix
- Pay for increased compaction 5% Bonus

Use Best Construction Practices

Uniform Paving Train Operation

- Determine plant production rate
- Plan for sufficient, timed mix delivery
- Establish a constant paver speed
- Assure ample rollers are available
 - Keep water trucks up to the rollers

Promote Innovation

- Encourage / require Intelligent Compaction
- Use WMA compaction aid
- SHRP2 IR
- Consider alternative rollers
 - Pneumatic
 - Vibratory Pneumatic
 - Oscillatory
 - ?

Bottom Line

asphalt institute

Increased compaction = Increased Performance And a Better R.O.I. for the taxpayers

Affiliate and Commercial members

Thank You for Your Time !!