Developing Balanced Mix Design Gyrations (N_{design}) for North Dakota's HMA Pavements

Presented to the ND Asphalt Conference April 3-4 Bismarck, ND

Nabil Suleiman, Ph.D. University of North Dakota

Problem Statement

- SuperPave Mix Design Compactive effort
 - N_{design} = 75 for 20 year design ESALs of 0.3-3.0 Millions
- ND kept 75 gyrations for all pavement classes
 - Does not represent compaction of low-volume pavements
- <u>Observations</u> Low volume Pavements
 - Pavements are dry (low binder content)
 - Brittle (Cracking)
 - Low Density/permeability
 - Rut resistant pavements are failing due to durability issues

Motivation

• <u>Experience</u> with Lower number of gyrations in ND

- 65 and 50 gyrations on LVR were tried
- Increased binder content by 0.1 0.2 percent
- Helped with durability

Research Approach

• Lower the Design Gyrations (N_{design})

- Keep gradation the same
- Higher Air Voids
 - Higher Binder Content
 - Higher VMA
- \circ <u>Determine</u> the effect of Lowering N_{design} on:
 - Rutting Resistance APA
 - Low Temperature Cracking Resistance DCT
 - Fatigue Cracking Resistance SCB

Outcome

- Durable Pavements should be resistant to
 - Low-Temperature cracking (LTC)
 - Fatigue Cracking (FC)
- Stable Pavements should be resistant to
 - Rutting (compromise)
 - Fatigue cracking

Projects for Design Gyrations

Project	FAA	Oil Type	Gyration Level	Gyration Level	Gyration Level
			1	2	3
1	40	PG 58S-28	50	65	75
2	43	PG 58S-28	50	65	75
3	45	PG 58H-28	55	65	75
4	45	PG 58H-34	55	65	75

Laboratory Mix Designs

- Perform Laboratory mix designs for all pavement classes and gyration levels
 - {FAA 40 & PG 585-28}
- @ 75, 65, and 50 gyr

- {FAA 43 & PG 585-28}
- {FAA 45 & PG 58H-28}
- {FAA 45 & PG 58H-34}

- @ 75, 65, and 50 gyr
- @ 75, 65, and 55 gyr
- @ 75, 65, and 55 gyr

Laboratory Testing

(1) Rutting Resistance

- Perform APA Test (AASHTO T 340)
- Four specimens for each pavement class and gyration level will be produced and tested
- 8,000 cycles in the APA @ 100psi
 - 130 cycles per rutting ESAL
- 7-9mm failure criterion

Laboratory Testing

(2) Low Temp Cracking Resistance

- Perform disk-shaped compact tension (DCT) Test (ASTM D7313)
- Four specimens for each pavement class and gyration level will be produced and tested
- Condition for 12 hours @ test temp
 - Test temp is @ low PG grade + 10°C
- Test determines fracture energy
 - Acceptable Fracture energy:
 - Min. 400 joules/m² (low traffic)
 - Min. 460 joules/m² (medium traffic)
 - Min. 490 joules/m² (high traffic)

Laboratory Testing

(3) Fatigue Cracking Resistance

- Perform semi circular bending (SCB) Test
- Four specimens for each pavement class and gyration level will be produced and tested
- Condition for 2 hours @test temp
 - Test temp is @ 25°C
- Test determines fracture energy & calculate flexibility index (FI)
 - FI <1 (brittle) FI <2 (poor)
 - 2<FI<6 (medium) FI>6 (high)

Results - Implementation

NDDOT would like to have answers to the following questions:

- How much more oil can be put into the lower and medium-volume mixes, FAA 40 & 43, before distresses are unacceptable?
- How much more oil can be put into the higher volume mixes, FAA 45, to help fight against dryness/brittleness, while continuing to keep rut in check?
- And how do different high-volume mix oil types affect these results?

Thank You

