North Dakota erence

elcome

NDSU

UPPER GREAT PLAINS TRANSPORTATION INSTITU NORTH DAXOTA LOCAL TECHNICAL ASSISTANCE PROFRAM

Intelligent Compaction I-94 Project Highlights

Bernie Southam – NDDOT

Bryce Wuori – Northern Improvement

North Dakota Asphalt Conference

Bismarck, ND - April 10-11-2018

I-94 Project Highlights

Presentation Overview

- Project Scope
- Project Requirements
- NDDOT & Intelligent Compaction
- Equipment Used on Project
- Project Results and Data
- IC Drawbacks
- Operator Benefits
- Contractor Benefits
- Owner Benefits

Project Scope

NDDOT JOB #10 (I-94 Concrete and Asphalt Repairs)

- 5.9 Miles Through Bismarck
- Grant Marsh Bridge to 1 Miles East of Exit 161 (Oasis Truck Stop)
- 13 On/Off Ramps
- Approximately 42,000 Tons of Super pave FAA 45 Asphalt
- Work to Take Place at Non-Peak Traveling Times
- Monday through Saturday (6:30 PM to 5:30 AM)
- Sunday (All Day)
- 90 % of Project Paved in Night Conditions
- 1.5" Leveling Course
- 1.5" Wear Course

SP 348 (14) Intelligent Compaction for hot mix Asphalt (HMA)

- Rollers
- GPS
- Work Plan
- Training
- GPS Calibration
- Roller Operations
- Equipment Malfunctions
- Data Submittal
- Data Analysis Software
- GPS Rover

Super pave FAA 45 Asphalt

- Modified PG 64-28 AC Oil
- 2 cores per Sub lot
- Average of 2 cores

Required Density of 92%

• Both lifts of Asphalt

 Users with access to the VisionLink 3D Project Monitoring account can export Production data in cell grid format to a .csv file for import to Veta. (see attached figure 1 for data sample file)

PO Box 1016

1086400.12182

Fax 701-705-687

2010.008.0040

MPANY

www.nicnd.com Highway - Heavy - Municipal Contractor We are an Equal Opportunity Employer

Data File Types

- CSV (Comma Delimited Value)
- .ttm (Trimble Triangulation Model) Final Surface As Built data

Temperature Measurement System

Trimble IC Smart Technology

Number of IC rollers

- Total of 4 IC rollers can be in operation at same time
 - Caterpillar CB66B
 - Caterpillar CB68B
 - o Caterpillar CCS7
 - Caterpillar CW16

Personnel Trained to work on IC System and Data Analysis

- Bryce Wuori (Northern Improvement Company, PM/Estimator MPM)
- IC/GPS Manager and Data Analysis Design Manager
- Will Design and be in charge of transfer data to NDDOT on daily basis or when requested
- Review and submit IC Data and Maps to NDDOT representatives
- Manage everyday IC operations in field and in office
- Nuclear Density Technician for (CMV) Setup and Calibrations
- Nathan Sandberg (Northern Improvement Company, PM/Tech)
 - IC/Field Manager and Data Analysis Technician
 - Will be in field checking control, equipment operations and data collection processes in real time
 - Site Setup and Data Analysis
 - Nuclear Density Technician for (CMV) Setup and Calibrations
- Dustin Grant (Tech Specialist, SITETECH Dakotas/Butler Cat) (Bismarck, ND)
 - Machine and site setup
 - Compaction Meter Value(CMV) setup
 - SITETECH technology representative/specialist
- Kasey Erickson (Butler Cat, Equipment Sales/Specialist) (Bismarck, ND)
 Machine setup and inspection
 - Machine Training and Technology Training
 - Butler Cat Equipment representative

NDDOT and Intelligent Compaction

Why the NDDOT is interested in Intelligent Compaction

- Get a uniformly compacted road
- Future Maintenance cost reductions (Less Patching)
- Smoother more dense roads from proper compaction methods
- CMV numbers and Data from IC is useful in locating areas that appear to have lower compactions values
- Does not eliminate use of nuclear gauge on project it is tool used by the contractor to determine their rolling patterns and timing for a better end product

NDDOT and Intelligent Compaction

NDDOT & Intelligent Compaction

- NDDOT does not use the CMV values to determine the pavement density pay factor
- Raw data files are very large and contain more than 100,000 rows of information
- As with any product the results are dependent on how well the contractor understands the information and how to use it
- Compaction still measured by field cores and compared to Maximum Theoretical Density
- Areas with poor cell phone coverage may not be able to use the VRS IC process to get needed data

Equipment Used on Project

IC Rollers

- Cat CB66B
- Cat CB68B
- Cat CW16
- Cat CCS7

GPS and IC Tools

- VRS
- Trimble IC Smart Technology
- Machine Sensors and Systems
- CB 460 Screen
- Vision Link
- Tsc3 Data Collector
- Nuclear Density Gauge

Time	CellN	FT	CellE FT	Elevation FT	Design Name	Mach ine	Speed_r ph	n LastGPS Mode	GPSAccT ol FT	TargPass Count	Total Passes	Lift	LastCMV	TargCMV	LastRMV	LastFreq Hz	LastAmp mm	TargThic kness FT	Machine Gear	VibeStat e	LastTem p c	
2017-Aug-24 21:11:58.059	_	424849.1	1909212	2 1746.407	NDDOT Job 7#10	CB68B M02417 0	5	5.2 RTK Fixed	- Medium (0.164FT)	6	5	7 :	1 47.	1 50	0 1.7	7 63.	7 0.38	0.656	Reverse	Off	67.9)
2017-Aug-24 21:11:58.059		424850.2	1909212	2 1746.463	NDDOT Job 3#10	CB68B M02417 0	5	5.2 RTK Fixed	Medium (0.164FT)	6	5 2	10 :	1 37.	1 56	0 1.4	4 63.1	7 0.41	0.656	Reverse	Off	67.9)
2017-Aug-24 21:11:58.059		424851.3	1909212	2 1746.519	NDDOT Job 9#10	CB68B M02417 0	5	5.2 RTK Fixed	Medium (0.164FT)	e	5	9 :	1 47.	1 50	0 1.4	4 63.	7 0.41	. 0.656	Reverse	Off	67.9)
2017-Aug-24 21:14:54.059		424852.5	1909212	2 1746.499	NDDOT Job 9#10	CB68B M02417 0	4	9.8TK Fixed	Medium (0.164FT)	6	5	8 :	1 42.	5 5(0 3.6	5 63.	7 0.35	0.656	S Reverse	On	58.7	,
2017-Aug-24 21:14:54.059		424853.6	1909212	2 1746.512	NDDOT Job 2#10	CB68B M02417 0	4	I.9 RTK Fixed	Medium (0.164FT)	e	5	9	1 42.	5 5(0 3.6	5 63.	7 0.39	0.656	Reverse	On	58.7	,

What is CMV

- CMV is a Calculated Measured Value
- CMV is a dimensionless unit
- CMV is a stiffness measurement
- Look for consistency in this value
- CMV is NOT DENSITY!!!!
- Measures Frequency's and G forces
- How hard is that drum hitting the Material

Intelligent Compaction I-94 Project Data Overview

- Compared over 117 Core Density Tests to IC Data collected
- Used IC Data from core locations in field (Coordinates)
- CMV (Compaction Meter Value)
- CMV at set at 50 = 94-94.5% Density
- CMV average for project was 47.34 or 93.5-94% Density
- Project required a 92% Density

IC Data I-94 C	omplete Ave	rages		
Date	CMV Value	Core Value	Expected Core Result	Value Difference Core Vs Expected
3/25/2017	47.34	93.42	93.86	

0.45

- Consistency = Smoothness
- 2 Grind Locations (Headers)
- Average Standard Deviation 7.0
- Average 56 Range

rofile Length	
5.9	Miles
Range	Inc/CPA
<=34.0	\$300.00
34.1 to 39.0	\$225.00
39.1 to 44.0	\$150.00
44.1 to 48.0	\$75.00
48.1 to 56.0	\$0.00
56.1 to 62.0	(\$100.00)
62.1 to 69.0	(\$200.00)
69.1 to 75.0	(\$400.00)
>=75.1	Corrective Action

Incentive/Contract Price Adjustment									
Total Cost	Cost/Lane- Mile								
EB Outside Lane	\$	950	\$	162					
EB Inside Lane	\$	(1, 325)	\$	(226)					
WB Outside Lane	\$	(4,600)	\$	(785)					
WB Inside Lane	\$	(3,900)	\$	(666)					
Total	22		\$	(8,875)					

	Statistic	al Informatio	on		
Statistic	EB Outside Lane	EB Inside Lane	WB Outside Lane	WB Inside Lane	
	0.1 mile	0.1 mile	0.1 mile	0.1 mile	
Average	50.1	56.4	59.6	58.6	
Standard Deviation	5.2	6.9	12.5	7.3	

Lots with bl

Comments

IC Drawbacks

- Initial Investment Costs
- Training Time and Costs
- New Technology Glitches
- Collects Data up to 1.5 M in Ground
- Immense Amount of Data Collected
- Understanding and Evaluating the Data

Operator Benefits

- Operator Awareness
- Eliminates Operator Error (Paints a Picture)
- Temperature Mapping (Too Hot or To Cold)
- Pass Count Mapping

Contractor Benefits

- Quality Control and Management
- Testing Costs
- Efficiency
- Consistency in Rolling Patterns
- Consistency = Smoothness
- Density Incentives
- Smoothness Incentives
- Can be Used in other Applications
 ✓ Subgrade
 ✓ Granular Base

Owner Benefits

- Quality Assurance and Management
- Better End Product
- Smoother Roads
- More Dense Asphalts
- Testing Costs (Less Cores)
- Data Collection
- Data Evaluation
- Complete Picture of Entire Project

Why IC and Technology is Important

- Competitive Edge
- Efficiency Tool
- Project Cost Reductions
- Flexibility/Diversity
- Quality Control Management
- Work Smarter and Not Harder
- Ahead of the Change Curve
- Technology is the key to success

Questions ?

Bernie Southam – NDDOT

Bryce Wuori – Northern Improvement

North Dakota Department of Transportation

inhato creait: Justin Hynamon, PE.

Dakota Asphalt Pavement Association, Inc.

"Dedicated to Quality Asphalt Paving Through Engineering, Research, and Education"

"Build with Asphalt"

NDSU

UPPER GREAT PLAINS TRANSPORTATION INSTITUTE NORTH DAKOTA LOCAL TECHNICAL ASSISTANCE PROGRAM

