ingevity

North Dakota Asphalt Conference

Future of Micro Surfacing

Tim O'Connell Ingevity Technical Representative April 11 2018

Micro Surfacing Innovations Improvements

- Changes being driven by Northern Tier States
- Climate appropriate base asphalt

Industry driven innovation

• Evaluation and design methods for surface treatments

MICROSURFACING

- **#** Emulsion-based surface treatment for road maintenance
 - Mixture of aggregate, asphalt emulsion (containing a polymer), mineral filler, chemical additives, and water
- **#** Application areas
 - High-speed, high-traffic volume roads
 - Airport runways
 - Rut-filling operations
- **#** Applied in thin layers
 - 3/8 inch to 5/8 inch for normal treatments
 - 1.5 inch for rut-filling applications

In Micro Surfacing water and chemistry take the place of heat to place an asphalt mix

- Aggregate and Binder are combined on the micro surfacing paver
- All the materials are at **near ambient** temperature:
 - Aggregate
 - -Asphalt Emulsion
 - -Additives

Micro Surfacing Paver

Micro surfacing Components

Mix as produced

Micro surfacing Components

Mix After Breaking & Curing *Theoretical

EMULSION-AGGREGATE MIXING

Equilibrium between interfacial and bulk emulsifier concentrations upset by introduction of charged aggregate. Adhesion of emulsifier to aggregate surface causes a decrease in bulk and interfacial concentrations. Droplets begin to flocculate.

ingevity

Micro Surfacing -

 Ruts in excess of ½" should be filled with a rut box

Rut Box

- 5 or 6 feet widths
- With augers
- V shaped screed
 - Channels larger aggregate into deeper parts of the rut
 - Feathers edges
 - Over-crowns rut to compensate for traffic compaction

Rut Filling

Rut Filled

Slurry Seal vs. Micro

TEST	SLURRY SEAL	MICRO-SURFACING
Sand Equivalent	45% minimum	65% minimum
Mix Time	180 seconds minimum	120 seconds minimum
WTAT, 1 Hour Soak	75 g/ft ²	50 g/ft ²
WTAT, 6 Day Soak	Not required	75 g/ft ²
Lateral Displacement	Not required	5% maximum

Scratch Course

Leveling (Scratch) Course

• Ruts $< \frac{1}{2}$ " may be filled with scratch course

The scratch coat is generally 6" less than the width of the lane.

Full Width Spreader Box

- Variable width 9 to 15 feet
- Rubber strike-off for surface
- Steel or Stiff Rubber for Level-up

- Secondary strike-off
 - Used to achieve desired
 - texture
 - Burlap drag
 - Rubber strike-off

Surface Texture Adjustment with Strikeoff

Textured wearing surface

Micro Surfacing Decision-Making...Driven by Project/Agency Performance Objectives

- Climate
- Traffic
- Time Constraints
- Existing Pavement Condition
- Base Stiffness
- Polymer & Additive Option
- Surface Texture Needs
- Design & Performance Testing
- Field Acceptance

International Slurry Seal Association (ISSA) Strategic Plan Goals and Timeline

- Slurry Seal Guideline Objectives
 Polymer-Modified Slurry Seal Guideline (Goal: June 2018)
- Inspector's Manual (Goal: April 2018)
- ISSA TB Revisions (Goal: September 2018)
- Micro Surfacing Guideline Revisions (Goal: Q1 2019)

Micro Surfacing Future Changes / Improvements

- Base AC Grade
 - Move to a climate specific Super Pave Binder
- High Performance Specification
 - Design Methods
 - Test equipment
 - Materials

- Standard Micro Surfacing Base Asphalt
 - Normally PG 64-22 (effectively a PG 58-28) when placed under micro surfacing condition construction process.
- Additional Grades being trialed in northern states
 - PG 58-28 (PG 52-34 as placed)
 - PG XX-34 (PG XX-40 as placed)
 - Note: All above are before addition of latex or polymer. Polymer raises top end 1 to 2 grades

21 Future of Micro Surfacing | April 11 2018

- When you make an emulsion mix or surface treatment the binder is not subjected to the heat / oxygen in the hot mix plant.
 - CQS ~ 100 to 120 F on delivery / application
 - CRS ~ 150 to 190 F on delivery / application
- Since SHRP Superpave PG binders are tested in the lab by subjecting them to a simulated hot mix and thin film heat aging they end up "harder" than what will be on the road using an emulsion mix.

Perform	and	ce Grad	es								
Max. Design Temp.	PG 46	PG 52	PG 58	PG 64	PG 70	PG 76	PG 82				
Min. Design Temp.	-34 -40 -46	-10 -16 -22 -28 -34 -40 -46	-16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34	-10 -16 -22 -28 -34				
Original											
<u>≥</u> 230 °C	Flash Point										
<u>≤</u> 3 Pa-s @ 135 °C	Rotational Viscosity										
> 1.00 kPa	DSR G*/sin δ (Dynamic Shear Rheometer)										
2 1.00 M 4	46	52	58	64	70	76	82				
(Rolling Thi	n Filr	n Oven) RT	FO, Mas	ss Change	<u>≤ 1.00%</u>						
> 2 20 kPa	DSR G*/sin δ (Dynamic Shear Rheometer)										
22.20 KFa	46	52	58	64	70	76	82				
(Pressure A	ging	Vessel) PA	V								
20 hours, 2.10 MPa	90	90	100	100	100(110)	100(110)	100(110)				
	DSR G*sin δ (Dynamic Shear Rheometer) Intermediate Temp. = [(Max. + Min.)/2] + 4										
≤ 5000 KPa	10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31 28										
S <u>≤</u> 300 MPa	BBR S	(creep stiffne	ss) & m-va	lue (Bending Bea	m Rheometer)						
$m \ge 0.300$	-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 0 -6 -12 -18 -24										
lf BBR m-value ≥ 0.300) and creep s	tiffness is between 300 and 6	00, the D irect Tensi	on failure strain requireme	ent can be used in lieu of	the creep stiffness re	quirement.				
0 4 000	DTT ()irect Tension Tester)									
ε _i ≥ 1.00%	-24 -30 -36	0 -6 -12 -18 -24 -30 -36	-6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24	0 -6 -12 -18 -24				

Perform	nanc	e Grad	les				_			
Max. Design Temp.	PG 46	PG 52	PG 58	PG 64	PG 70	PG 76	PG 82			
Min. Design Temp.	-34 -40 -46 -	10 -16 -22 -28 -34 -40 -46	-16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34	-10 -16 -22 -28 -34			
Original					(2-12-76-0) - 96-76-9 					
<u>≥</u> 230 °C	Flash	Point	In em	ulsion on	the origin	DSR	FP & RV			
<u>≤</u> 3 Pa-s @ 135 °C	Rotational Viscosity Values are relevant to what end up on t									
> 1.00 kPa	DSR G	*/sin δ (Dynamic S	Shear Rheomete	r)		nat cha				
≥ 1.00 KFa	46	52	58	64	70	76	82			

The Future of Micro Surfacing Materials & Mix Design – Softer Base

Field application ahead of fully proven mix design methodology.

- Emulsion Distillation residue yields different test values when made with PG 58-28 or softer. (Penetration & Softening Point)
 - Latex / Polymers react and differently
- Micro surfacing mix design tests produce different numbers. (Wet Track Abrasion Tests and Loaded Wheel Tests.

- Modifiers
 - Pre-modified asphalt base
 - Latex modified emulsion
 - Fibers in mix

Polymer and Latex Modification of Micro Surfacing

Courtesy of BASF

UTILITY OF LATEX

Improve adhesion of asphalt to aggregate

Improve asphalt elasticity in the finished material for stability in the summer and flexibility in the winter

Types of Fiber

Glass

Polyester

Fiber Modified Slurry & Micro Surfacing

ingevity

Fiber Dispersion

% of Binder

Aggregate gradation

Polymer

Crack Resistance

✓ Fiber Dispersion

✓ Soft Binder

✓ % of Binder

✓ Aggregate gradation

✓ Polvmer

Looking Friction and Texture

Dynamic Friction Tester (DFT)

Circular Track Meter (CTM)

Micro Surfacing Mix Testing for Surface Texture and Dynamic Friction Tests

9.5 mm S4 Oklahoma DOT mix (hot plant produced)

Slab prep

Reheat mix

Compact slab

Slabs were used "as is" from the compactor 19" X 15" X 2"

Slab before treatment

 Typical slab after removal from compactor

Slurry & Micro Preparation

Texture

AMES Texture Meter was run before loading into the 3WP

37 **#AAIAM2017**

Wear testing of Surface Treatements

Three Wheel Polisher in action on CRS-2LM Note: Water spray on surface when in motion

ingevity

AMES Texture

Micro surfacing texture Before 3wp wear

Micro surfacing texture After 8000 wear cycles

Friction

Texture

5/14/2018 Observations

Sample Preparation

- Samples did not represent <u>aged</u> <u>or distressed asphalt surfaces</u>
- Fog, Slurry & Micro samples produced reasonably close to field
- Chip (CRS-2, CRS-2LM) samples did not replicate field
 - Required additional rolling
 - Traffic effects not replicated for embedment

3 Wheel Polisher

- 3WP intended to evaluate resistance to aggregate polishing
- 3WP use on Fog, Slurry & Micro reasonably replicated field distress
- 3WP use on chip seals needs additional work to replicate field distress
 - Experienced excess chip loss
 - Chip contributed to rapid surface degradation

Flexural Tension Test

- 0.2% AR Glass Fiber
- LWT 1000 Cycles
- ¹/₂" Thick Mold
- Temp. 5c

Flexural Tension Test

Measuring Surface Texture With Ames Engineering Surface Texture Scanner

WTAT Sample

Scanned Area

Surface Texture Effect on Wet Track Abrasion Test Results

Surface Texture Appearance After WTAT Wear

Before and After Low Surface Area & WTAT Loss

Before WTAT soak low surface area & WTAT loss

After WTAT wear low surface area WTAT loss

Before and After High Surface Texture High WTAT Loss

High Surface Texture WTAT Scan before soak and wear

High Surface Texture WTAT Scan After Soak and Wear

WTAT Loss Vs EM, %

Each error bar is constructed using 1 standard deviation from the mean.

Effect Summary (WTAT Only)

Effect Summary

Source	LogWorth									PValue	
Chem load, %*EM, %	10.610	1								0.00000	
Gradation*H20 pre-add, %	7.570				1	1	18	1	÷	0.00000	
Chem load, %(1.2,1.8)	7.501									0.00000 ^	~
Strike off S to S	6.998			1 :	1	1	18	÷	- E	0.00000	
EM, %(12,14)	6.070							- 10		0.00000 ^	~
Template Thicness*EM, %	4.562		1	1	1	1	÷.	÷	1	0.00003	
Strike off	2.724			1				- 11		0.00189	
Strike off*Chem load, %	2.289		1	1	1	1	18	1	1	0.00514	
Template Thicness	1.778			1				- 11		0.01667	~
Gradation	1.720	1	1	1	1	1	18	1	÷	0.01904	~
H20 pre-add, %(8,12)	1.176					- 01		- 22	11.	0.06670	~

The Future of Micro Surfacing

- Challenge assumptions
- Borrow from the overall asphalt industry.

Future of Micro Surfacing -

Update Industry Source Material & Documentation

Evaluate / Revise Test Methods and Specifications

