

Structural Plate North Dakota

Tim Miller

www.ContechES.com

CNTECH* ENGINEERED SOLUTIONS

Presentation Agenda

- Structural Plate History
- Structural Plate
 - o Design Life
 - o Installation
- Inspect/Assess
- Fix
 - Invert Repairs
 - Extensions
 - o Buried Bridge
 - o Reline/rehabilition

		C NTECH ENGINEERED SOLUTIONS
Structura	al Plate Durat	oility – Galvanized Steel
NCSP/	CERVICE (1/5)	Plate and CSP estimator on website
STEEL: PROVEN 100-Y	000	Based on CALTRANS/AISI studies of CSP
Gage: 12 Gage: 10	ator (Plate) – Beta Version	Buried bridges designed without inverts Improves overall durability Eliminates potential invert corrosion Quality backfill aids in durability
Gage: 8 Gage: 7	N/A 89 Years	Steel structural plate – 50% more galvanized coating
Gage: 5 Gage: 3	99 Years 100 Years	otool otraotaral plate 50% more garvainged coating
Gage: 1 Gage: 5/16 Gage: 3/8	100 Years 100 Years 100 Years	Post applied coatings aid in extending service life Polymers, Asphalt, Concrete Paving, etc.
Gage: 3/0	100 Years	r digitiers, Aspiralit, Concrete r aving, etc.
Desired Service Life (Years)	75	Impermeable membranes over structure Minimize water migration
Resistivity (Ohm-cm)	2000	Shed de-icing chemicals
рН	6	
		NCSPA.org for Service Life Calculator
Abrasion Level	Level 3: Moderate Abrasion	,
		www.ContechES.com

Durability - Hot Dip Galvanizing Steel PLATE

Galvanized Steel MULTI-PLATE requires a pH between 6 – 10 and resistivity between 2000 - 8000 ohm-cm for a minimum 50 year design life.

There are many technics used to increase the service life of Hot-Dip Galvanized Structures

- 1) Design an open bottom arch on concrete footings.
- 2) Increase the steel thickness of the invert plates
- 3) Field Poured concrete paved inverts add 30 + years of service life
- 4) Clean, free draining aggregate backfill if soil side corrosion is a concern
- 5) Membranes above the crown in heavy salted road with minimum cover

Durability Benefits of Clear Span

Improves Long Term Durability

- No Invert Keep normal flows away from structure
- Exposure to high flows for short duration
- Free draining backfill
- Clear span sensitive wetlands

BridgeCor

 Deep corrugated metal structures Spans up to 80'
 AASHTO approved
 9X stiffer than MULTI-PLATE
 Accelerated construction methods

www.ContechES.com

Structural Plate Durability – Aluminum

- Metal oxide film
 - $\circ~$ Pit rate can be estimated at 1 mil/yr.
 - Ex.: 0.100" thick plate/ 0.001"/yr = 100 year design life
- Excellent abrasion resistance
 - Metal oxide film is not a coating
- Excellent saltwater performance

Bay of Fundy US Rte 1 Robbinston, ME

- 1966 install
- Saltwater environment
- No metal loss

					C
- Main	sion Table: 4a ine Drainage - rivice Life - 75 Year	rs)			
				on Zone	
Pipe Material		Zone 1	Zone 2	Zone 3	Zor
Concrete Pipe (Section 830.01)		Y	Y	Y	Y
Metal Pipe (Section 830.02)	Gauge	100 A COST	NAME OF THE OWNER, WHEN	T TOTAL PROPERTY.	GENERAL SE
metal Fipe (Section 830.02)	16 ga.		_	-	+-
Zinc Coated Corrugated Steel	14 ga.		-	-	+-
	12 ga.		-		+
	10 ga.	Y	_	_	+
	8 ga.	Y	Y		+-
	16 ga.				+
	14 ga.				$^{+}$
Aluminum Coated Corrugated Steel (Type 2)	12 ga.	Y			$^{+}$
	10 ga.	Y	Y		
	8 ga.	Y	Y	Y	\perp
	16 ga.	Υ	Y	Y	\perp
Polymeric Coated Steel	14 ga.	Y	Y	Y	_
(over Zinc or Aluminum Coated Steel)	12 ga.	Y	Y	Y	4
	10 ga.	Y	Y	Y	+
	8 ga.	Y	Y	Y	+
Structural Steel Plate Pipe (Zinc Coated)	16 ga.			_	+
	14 ga. 12 ga.		+	_	+
	10 ga.	Y	_		+
	8 ga.	Ÿ	Y		+
	16 ga.	Y	Y		+
	14 ga.	Y	Y		+
uminum Allau Chrystysel Dieta D'		Y	Y		+
Aluminum Alloy Structural Plate Pipe	12 ga.				+
	10 ga.	Y	Y		4
	8 ga.	Y	Y		- 1

					ENG
Stru	ctui	ral P	late S	Sha	pes
Shapes	Si	zes=Span x Rise	10000000000000000000000000000000000000		20'-1" x 9'-1"
Round		5' to 50'-6"	High-Profile *	1 1	35'-4" x 20'-0"
Vertical Ellipse		4'-8" × 5'-2"	Horizontal Ellipse		19'-4" x 12'-9" to 37'-2" x 22'-2"
	\overline{A}	25' x 27'-8" 12'-2" x 11'-0"	Pear- Arch		23'-11" x 23'-4 to 30'-4" x 25'-10'
Underpass		to 20'-4" x 17'-9"			23'-8" x 25'-5'
Pipe-Arch		6'-1" x 4'-7" to 20'-7" x 13'-2"	Pear		29'-11" x 31'-3
Horizontal Ellipse		7'-4" x 5'-6" fo 4'-11" x 11'-2"	Box Culvert		8'-9" x 2'-6" to 35'-3" x 13'-7"
Arch (single radius)		6' x 1'-10" to 54'-4" x 27'-2"	Elliptical/Circular Arch **		12' to 102'
Arch (2-radius)		18'-5" x 8'-4" to '0'-7" x 19'-11"	H-20 Bridge ** Pedestrian **		spans up to 300 spans up to 300
Low-Profile Arch*	7	19'-5" x 6'-9" to 45'-0" x 18'-8"			

ENGINEERED SOLUTIONS

Backfill with aggregate to proper density

AASHTO A-1, A-2-4, A-2-5, A-3 aggregate. Compact symmetrically on each side. 8" – 10" loose lifts compacted to a minimum 90% density per AASHTO T180.

Inspection

- 1. Get access to culvert
- 2. Check dimensions and shape
- 3. Location of issues (Corrosion at invert or other locations)
- 4. Deformation
- 5. Count number of plates and bolt holes circumferential
- 6. Take pictures

1960's plate install Grand Forks

www.ContechES.com

Assessment and Issue

- 1. Abrasion Invert
- 2. Soil side corrosion
- 3. Water Corrosion
- 4. Improper Backfill Used or Compaction

1961 Install Near Dickinson

Fix

- 1. Invert Concrete Paving per FHWA Standards
- 2. Allowable Deflection
- 3. Reline or Rehabilitation Option
- 4. Open Cut Replacement

MDT Bid Alternates Design Requirements: - Both meeting same design life per MDT - Same hydraulic capacity and load requirements (HL93) Bid Options for 106' Structure: - 12' x 6' RCB - 13'-3" span 9'-4" rise Multi Plate Pipe Arch ERONI ELEXATION FROM ELEXATION WWW.ContechES.com

