

Milling for Smoothness

Kyle Hammon Roadtec, Inc.

Overview

- -Terminology
- -How does this work?
- -Why is this important?
- -Factors that affect the finished product
- » Environment
- » Machine Maintenance
- » Machine Configuration
- » Operating Practices

Terms of the machine

Terms of the machine- Cutter Drum

Standard Drum

Triple Wrap
Offset Flighting

2D Control Systems

Averaging Systems

Do averaging systems work?

When should we use averaging?

3D Control Systems

Mill to Grade based on Position

They are only as accurate as the Data.

Why milling QC is important

The reference for paver grade/slope control is the milled surface

The paver won't fix it

Ground man

Must to be in control of what is going on around the machine at all times.

A ground man needs to know what areas the machine will be referencing for grade, and make sure those surfaces are clean and free of obstructions

Control points

The job should be properly laid out

The beginning and end of each pass should be properly marked, as well as desired grade

Keep it Clean

Your Cut surface is only as good the surface you Walked on.

If you have this to work with you will never achieve grade.

Why?

Clean up your mess

Clean up after you pick up.

What will happen when you set back down.

Proper Tooling Maintenance

Proper Holder Wear

Tool Wear Characteristics

At Stage 3
Tool has lost 0.365 " [9.3 mm] of gage height

Production Tradeoff

Look at the Holders

New holders change the drum pattern.

Caliper set at EXACTLY 2"

Proper Maintenance

The Math of Milling

The 4 Main Factors that Affect Surface Texture

- 1. Line Spacing
- 2. Forward Speed
- 3. Drum RPM
- 4. Lacing Pattern

Line Spacing and Texture

5/8" (16mm) Triple Wrap Lacing

5/8" (16 mm) Triple Wrap at 30 fpm

Micro-Milling Pattern

2/10" (5mm) Quad Wrap Lacing

2/10" (5mm) Quad Wrap Lacing

Amount of Tools

12'6" (3.5 m) Full Lane Drum		
Line Spacing	# of Teeth	Cost of Teeth
5/8" (16 mm)	268	\$1340
3/8" (9 mm)	406	\$2030
0.2" (5 mm)	770	\$3850

Nearly 3 times more teeth
Nearly 5 times the cost
No more quick change holders

Production Tradeoff

Advance Rate = 30 fpm or 9 mpm

Advance Rate = 9 mpm or 30 fpm Drum Diameter = 115 cm or 46" Drum Speed = 100 rpm

> Machine Advance 9 cm or 3.6"

0.18 cm or 0.071"

30 fpm

Advance Rate = 60 fpm

Advance Rate = 60 fpm

Drum Diameter = 46"

Drum Speed = 100 rpm

Machine Advance 7.2"

60 fpm

Advance Rate = 120 fpm

Advance Rate = 120 fpm

Drum Diameter = 46"

Drum Speed = 100 rpm

120 fpm

30 fpm vs. 120 fpm

2.3 miles in a day vs. 9.1 miles in a day

The Math of Milling

The 4 Main Factors that Affect Surface Texture

- 1. Line Spacing
- 2. Forward Speed
- 3. Drum RPM
- 4. Lacing Pattern

Double Hit Drums

Above
Double hit Quad wrap drum

Standard triple wrap drum Below

Drum Lacings Scroll Start Comparisons

Triple Wrap

Double Hit Quad Wrap

Pattern Comparisons

Pattern Comparison

5/8" Triple Wrap at 100 FPM

7/8" DHQW at 100 FPM

Sand Patch Test ASTM E965

Indiana Glass Bead Test (ITM 812)

http://www.in.gov/indot/div/mt/itm/pubs/812_testing.pdf

