

NORTH DAKOTA ASPHALT CONFERENCE April 5-6, 2016 • Ramada Bismarck Hotel

Asphalt Binder Basics Specifications, History and Future

Mark D. Blow, PE Sr. Regional Engineer - Asphalt Institute Harrisburg, SD

"A dark brown to black cementatious material in which the predominating constituents are bitumens which occur in nature or are obtained in petroleum processing." – ASTM D8

The glue that binds the aggregate together and waterproofs the pavement.

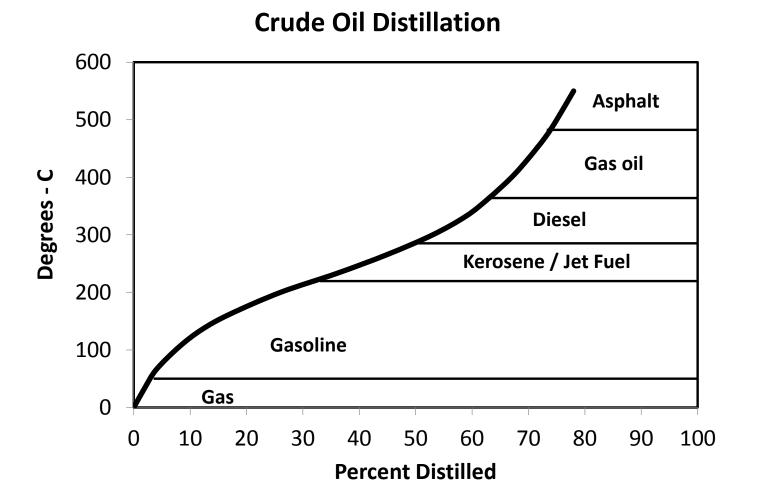
History

First US hot mix asphalt (HMA) constructed in 1870's

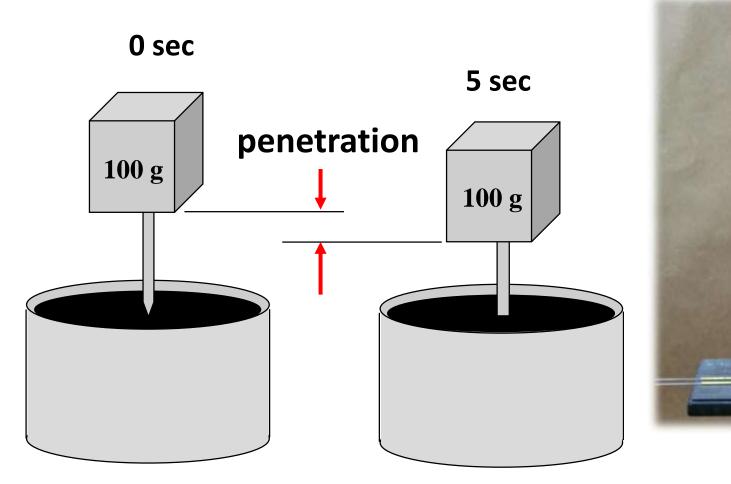
- Pennsylvania Ave.
- Used naturally occurring asphalt from surface of lake on Island of Trinidad

Demand for paved roads exceeded the supply of lake asphalts in late 1800's Led to use of petroleum asphalts

Petroleum Asphalt



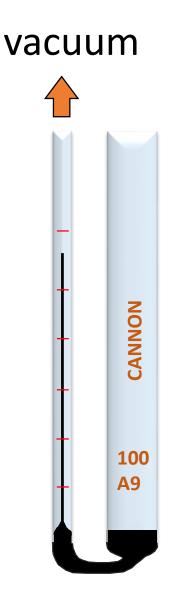
Sweet vs. Sour Light vs. Heavy


Crude Distillation Temperatures

- Penetration
 - Developed in early 1900s (first ASTM 1947)
 - Tested @ 25°C (77°F)
- Viscosity
 - Developed in 1950s
 - Absolute Viscosity
 - Tested @ 60°C (140°F)
 - Kinematic Viscosity
 - Tested @ 135°C (275°F)

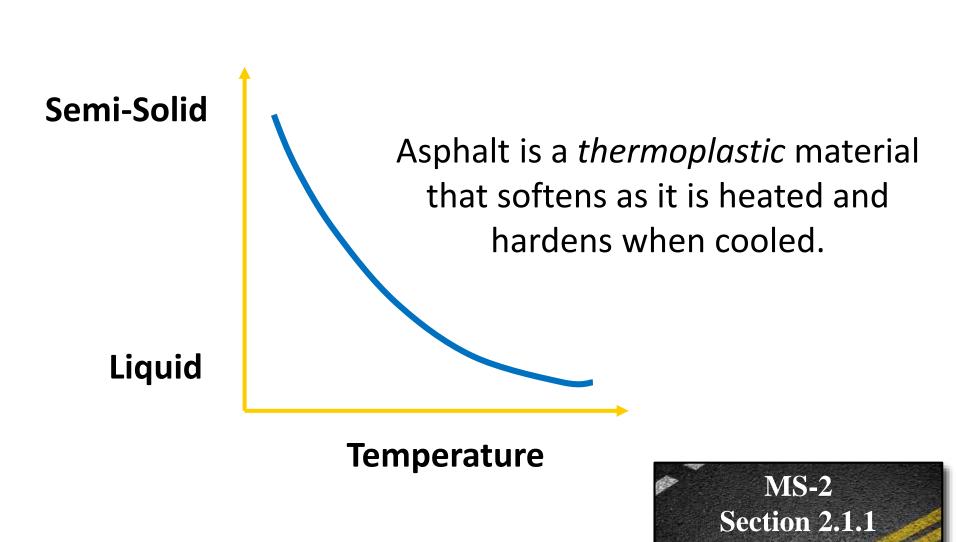
Penetration (1900s)

Penetration Specification

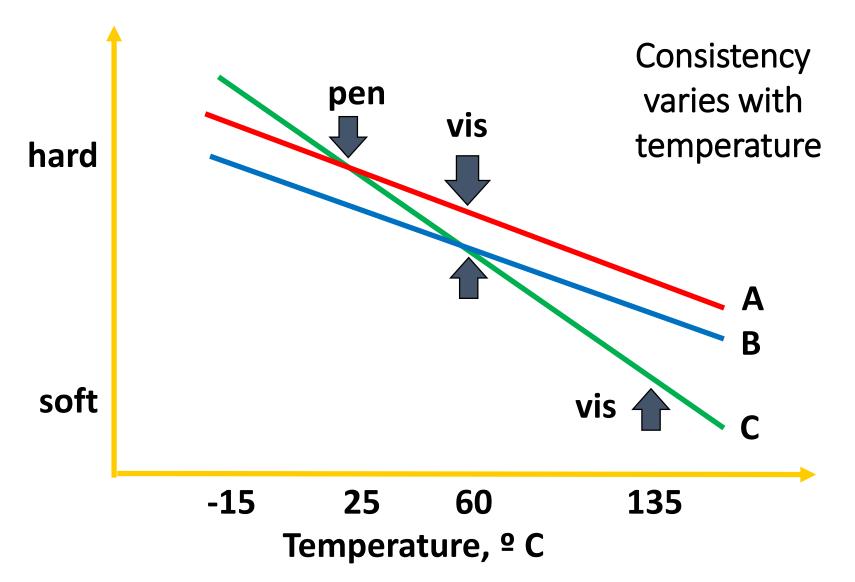

Characteristics	AASHTO	ASTM	Penetration Grades				
Penetration, 77°F, 100 g, 5 sec	T49	D5	40 - 50	60 - 70	85 - 100	120 - 150	200 - 300
Visc. @ 275°F Kinematic, Cs Saybolt Furol, SSF	T201	D2170 E102	240 + 120 +	200 + 100 +	170 + 85 +	140 + 70 +	100 + 50 +
Flash Point, °F, Clev Open Cup	T48	D92	450 +	450 +	450 +	425 +	350 +
Thin Film Oven Test Pen on Residue, 77°F, % Orig.	T179 T49	D1754 D5	55 +	52 +	47 +	42 +	37 +
Ductility @ 77°F, cm @ 60°F, cm	T51	D113	100 +	100 +	100 +	60 +	 60 +
Sol. In Trichloroethylene, %	T44	D2042	99.0 +	99.0 +	99.0 +	99.0 +	99.0 +

General Requirement – The asphalt shall be prepared by the refining of petroleum. It shall be uniform in character and shall not foam when heated to 350° F

Viscosity (1950s)


Measure time of flow between lines

11

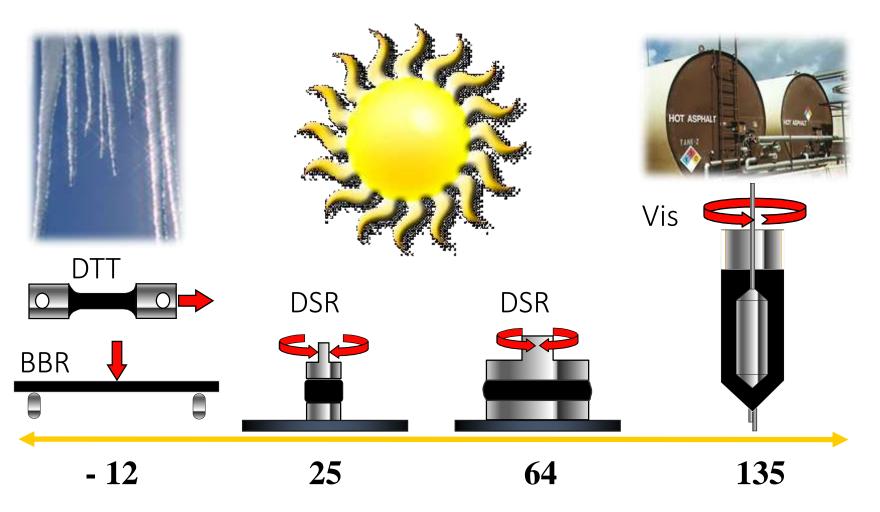


Viscosity Specification

Characteristics	Viscosity Grades								
Test	AC-2.5	AC-5	AC-10	AC-20	AC-30	AC-40			
Visc. @ 140°F Kinematic, P	250 ± 50	500 ± 100	1000 ± 200	2000 ± 400	3000 ± 600	4000 ± 800			
Visc. @ 275°F Kinematic, Cs, Min.	125	175	250	300	350	400			
Penetration,77°F, 100 g, 5 sec, Min.	220	140	80	60	50	40			
Flash Point, °F, C.O.C., Min.	325	350	425	450	450	450			
Sol. In Trichloroethylene, %	T44	99.0 +	99.0 +	99.0 +	99.0 +	99.0 +			
Tests on TFOT Residue									
Loss on Heating, %, Max.		1.0	0.5	0.5	0.5	0.5			
Visc. @ 140°F Kinematic, P, Max.	1000	2000	4000	8000	12000	16000			
Ductility @ 77°F, cm, Min.	100	100	75	50	40	25			
Spot Test	Neg.	Neg.	Neg.	Neg.	Neg.	Neg.			

Historic Specifications - Shortcomings

Superpave Asphalt Binder Specification


Grading System Based on Climate

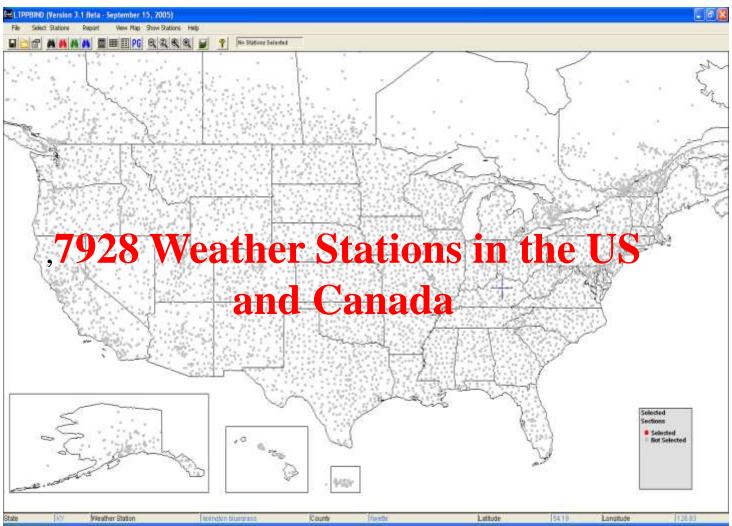
PG 58-22

Performance Grade Average 7-day max pavement design temp Min pavement design temp

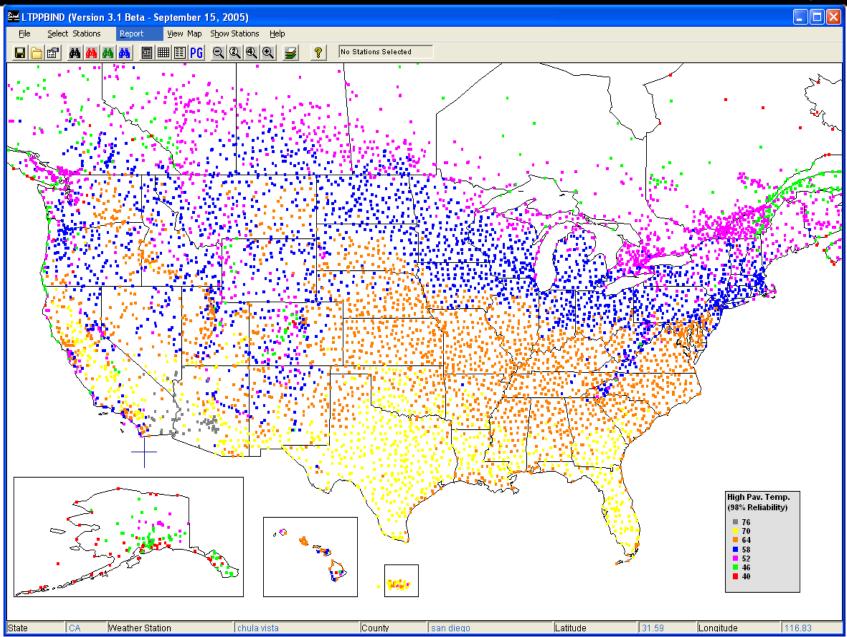
Testing Temperature – Climate based

asphalt institute

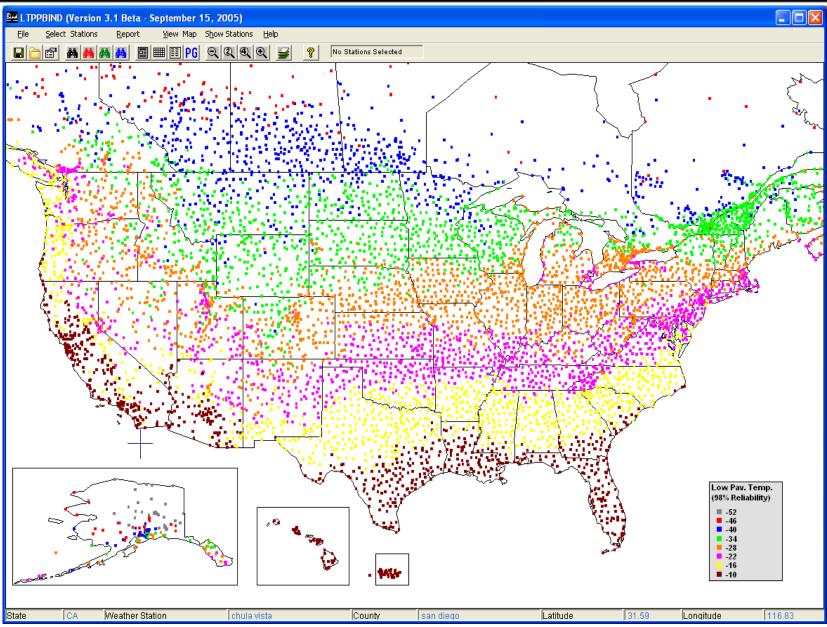
Pavement Temperature, °C


Values for PG 64-22

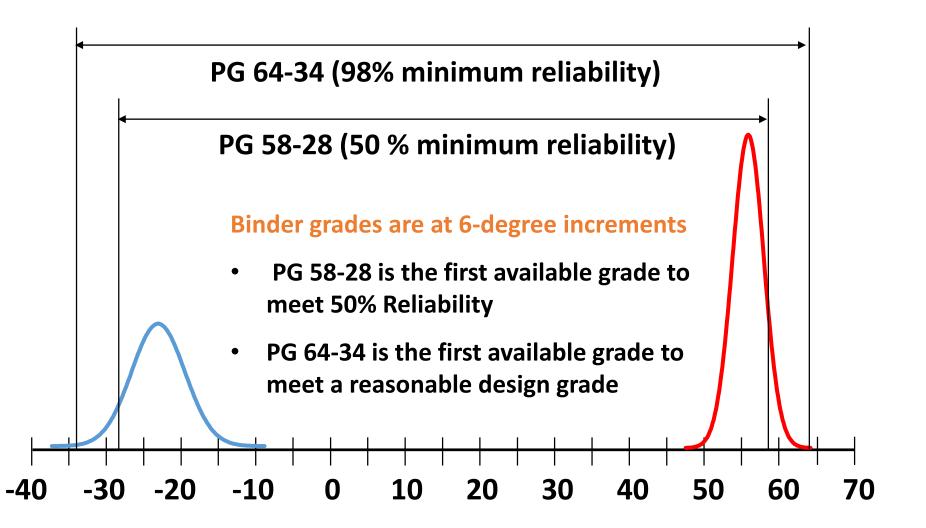
LTPPBind


LTPPBIND Software

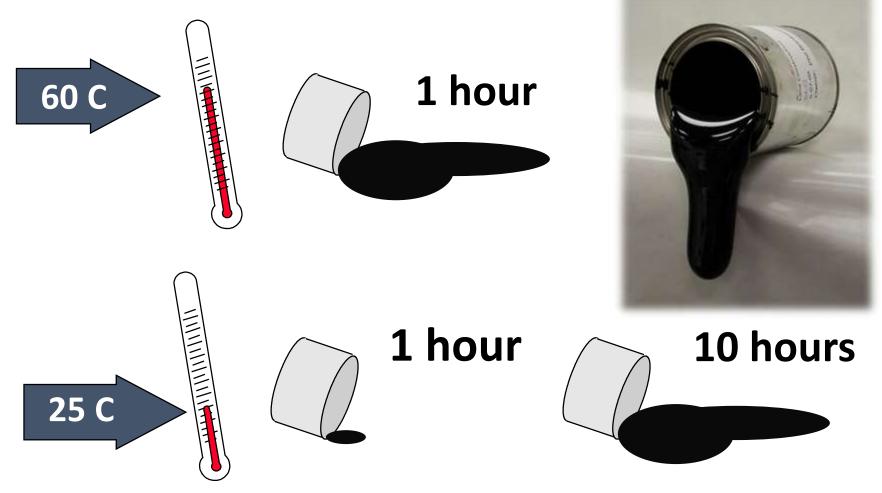
http://www.fhwa.dot.gov/PAVEMENT/Itpp/Itppbind.cfm


High Temperature Grades

17


Low Temperature Grades

18



Asphalt Flow Behavior

Time & Temperature Dependent

Effect of Loading Rate on Binder Selection

Toll road
PG 64-22
90 kph (55 MPH)
Toll booth
PG 70-22
Slow
Weigh stations
PG 76-22
Stopping

Example:

Effect of Traffic Amount on Binder Selection

- 10 to 30 million ESALs
 - Consider increasing one high temperature grade
- > 30 million ESALs
 - Increase one high temperature grade
- Newer recommendations are based on more gradual bumping in LTPPBind version 3.0+

asphalt institute

Performance Grades

Max. Design Temp.	PG 46	PG 52	PG 58	PG 64	PG 70	PG 76	PG 82		
Min. Design Temp.	-34 -40 -46	-10 -16 -22 -28 -34 -40 -46	-16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34	-10 -16 -22 -28 -34		
Original									
≥230 °C	Flash	Point							
≤ 3 Pa-s @ 135 °C	Rotat	ional Viscosity							
≥ 1.00 kPa	DSR G*/sin δ (Dynamic Shear Rheometer)								
	46	52	58	64	70	76	82		
(Rolling Thi	n Fili	m Oven) RT	FO, Mas	ss Change	≤ 1.00%		Alter The P		
> 2.20 kPa	DSR 0	G*/sin δ (Dynamic S	Shear Rheomete	r)					
Sereo M d	46	52	58	64	70	76	82		
(Pressure A	ging	Vessel) PA	v						
20 hours, 2.10 MPa	90	90	100	100	100(110)	100(110)	100(110)		
≤ 5000 kPa	DSR G*sin δ (Dynamic Shear Rheometer) Intermediate Temp. = [(Max. + Min.)/2] + 4								
	10 7 4	25 22 19 16 13 10 7	25 22 19 16 13	31 28 25 22 19 16	34 31 28 25 22 19	37 34 31 28 25	40 37 34 31 28		
S ≤ 300 MPa	BBR S	6 (creep stiffne	ss) & m-va	lue (Bending Bea	m Rheometer)				
m ≥ 0.300	-24 -30 -36	0 -6 -12 -18 -24 -30 -36	-6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24	0 -6 -12 -18 -24		
If BBR m-value ≥ 0.30	0 and creep s	stiffness is between 300 and 6	00, the Direct Tensio	on failure strain requirem	ent can be used in lieu of	the creep stiffness re	equirement.		
ε ₁ ≥ 1.00%	DTT (I	DTT (Direct Tension Tester)							
0/21.0010	-24 -30 -36	0 -6 -12 -18 -24 -30 -36	-6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24 -30	0 -6 -12 -18 -24	0 -6 -12 -18 -24		
	-								

Executive Offices & Research Center 859.288.4960 | Fax 859.288.4999 23 2696 Research Park Drive | Lexington, Kentucky 40511-8480

We're driven. ASPHALT INSTITUTE

Reliability

asphalt instit

"Rule of 92" PG 64 - 34 => 64 - - 34 = 98 **Probably modified Depends on asphalt source**

Rounding

Effect of Traffic

MSCR Implementation

The use of polymer modified binders has grown tremendously over the past several years

However, the most widely used binder specification in the U.S., AASHTO M320, was based on a study of neat (unmodified) binders, and may not properly characterize polymer modified binders

Study of the two mixes with the same aggregate structure, but different binders.

PG 63-22 modified, no rutting

PG 67-22 unmodified, 15mm rut

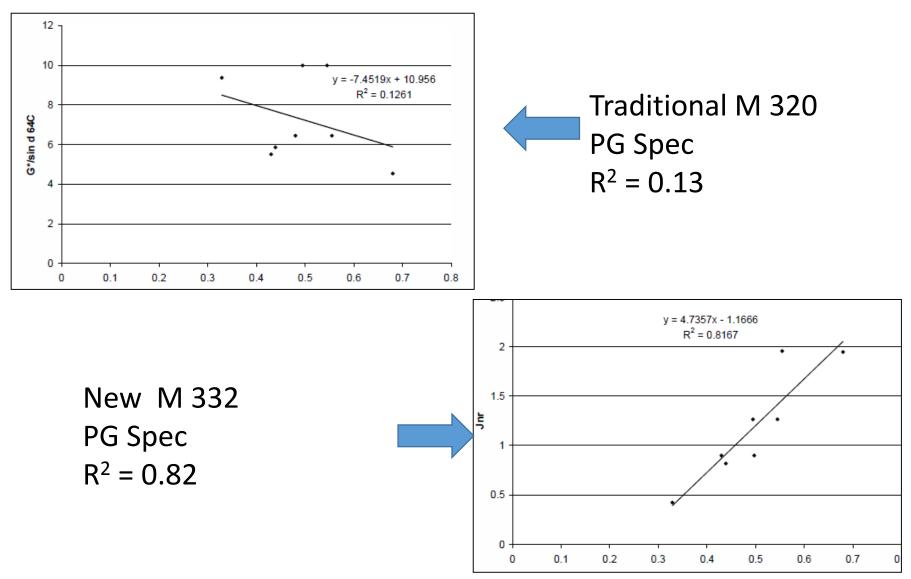
What happened as a result of M 320's inability to fully characterize polymer-modified binders?

- Most states began requiring additional tests to the ones required in AASHTO M 320
- These mostly empirical tests are commonly referred to as "PG Plus" tests
- These tests are not standard across the states difficult for suppliers
- Even some of the tests that are the most common, e.g. Elastic Recovery, are not run the same way from state to state

- The Elastic Recovery Test is an excellent tool to establish the *presence* of polymer modification.
 - It takes about 4 hours to prepare and test samples for this information.
- However, it is a poor tool to evaluate the rutting *performance* of polymer-modified binders.
- The MSCR test can use the same sample already being run in the DSR to give more information in a few extra minutes.

Multiple Stress Creep Recovery Test

- Performed on RTFO-aged Binder
- Test Temperature
 - Environmental Temperature
 - Not Grade-Bumped
- 10 cycles per stress level
 - 1-second loading at specified shear stress
 - 0.1 kPa
 - 3.2 kPa
 - 9-second rest period


ALF Loading

- The pavement was heated to a constant 64°C.
- The FHWA ALF uses an 18,000 lb. single wheel load with no wheel wander.
- The speed is 12 MPH.
- This is a extreme loading condition far more severe than any actual highway.

ALF Loading – M 320 vs. M 332

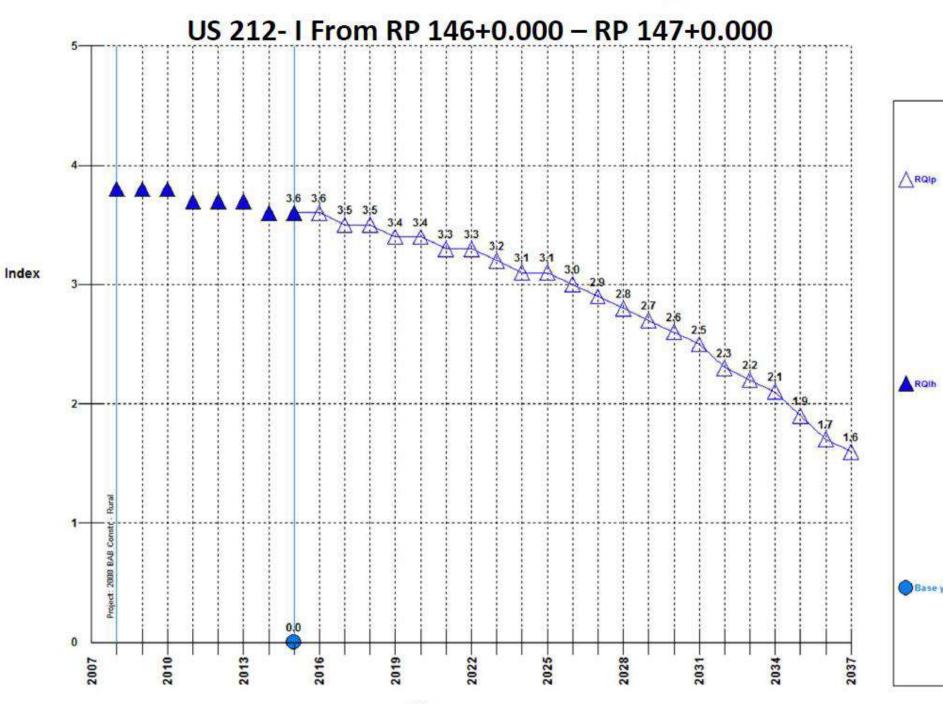
asphalt

ACADEMY

Performance Grades (AASHTO M332)

High PG	PG 52	PG 58	PG 64	PG 70	PG 76				
Low PG	-10-16-22-28-34-40-46	-16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -34 -40	-10 -16 -22 -28 -3				
Original									
≥230 °C	Flash Point, AASHTO T 48								
≤3 Pas	Rotational Viscosity @ 135°C, AASHTO T 316								
<u>≥</u> 1.00 kPa. E	DSR G*/sin δ (C	DSR G*/sin δ (Dynamic Shear Rheometer), AASHTO T 315							
	52	58	64	70	76				
RTFO (Rolli	ing Thin Film	n Oven), AAS	HTO T 240						
≤ 1 . 00%	Mass Change								
≤4.5 kPa ⁻¹ S	MSCR Jnr, 3_2 (Multiple Stress Creep-Recovery), AASHTO T 350								
≤2.0 kPa ⁻¹ H ≤1.0 kPa ⁻¹ V ≤0.5 kPa ⁻¹ E	52	58	64	70	76				
≤75% V	MSCR Jnr, Diff (Multiple Stress Creep-Recovery), AASHTO T 350								
	52	58	64	70	76				
PAV (Press	ure Aging Ve	essel), AASHT	O R28						
	90	100	100	100(110)	100(110)				
≤5000 kPa S ≤6000 kPa H ≤6000 kPa V	DSR G*sin δ (Dynamic Shear Rheometer), AASHTO T 315 Intermediate Temp. = [(High PG + Low PG)/2] +								
≤6000 kPa V ≤6000 kPa E	25 22 19 16 13 10 7	25 22 19 16 13	31 28 25 22 19 16	34 31 28 25 22 19	37 34 31 28				
S <u><</u> 300 MPa m ≥ 0.300	BBR S (creep s		value (Bending Bear 0-6 -12 -18 -24 -30						

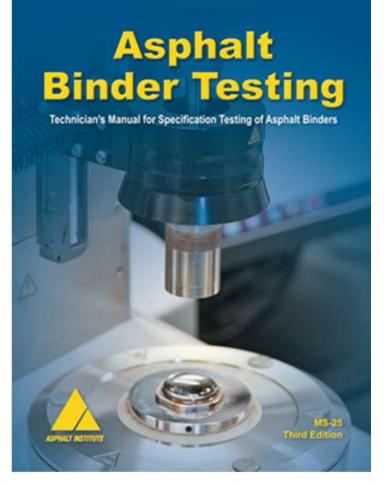
asphaltinstitute.org



Chris Kufner, MnDOT Metro District Pavement & Materials Engineer

Performance of US 212 SMA

- ▶ >10 million ESALs \rightarrow Concrete Pavement
- ▶ <10 million ESALs → LCCA → Alternate Bid
- Majority of project was > 10 million, but
- Westerly 2.7 miles < 10 million ESALs</p>
- Alternate Bid:
 - Bituminous option: 9" Bit (top 2" is SMA)
 - Concrete option: 10" Concrete
 - BOTH: 6" Aggregate Base over 24" Sel Granular over 24" compaction subcut.



Performance of US 212 SMA

For More Binder Information

MS-25

The ASPHALT BINDER HANDBOOK

MS-26 Ist Edition

MS-26

Brought to you by our Members

S asphalt institute

Global, International, Regular, Associate and Canadian members

Thank You - Questions ?