2015 North Dakota Asphalt Conference

NDDOT Implementation of AASHTO Flexible Pavement Design

Part I – ADT & ESALS – Nickie Reis, P&AM Part II – Structural Numbers – Tom Bold, M&R

March 31 - April 1, 2015

Part I – ADT & ESALS – Nickie Reis, P&AM Part II – Structural Numbers – Tom Bold, M&R

Process of going from traffic counts to ESALs (Equivalent Single Axle Load)

It all begins with Traffic!

- Without a quality traffic count everything is based on assumptions or best estimates.
- A traffic count doesn't do much good if it has incorrect data.

Traffic Counts

- NDDOT collects traffic using portable Automatic Data Recorders (ADRs) to obtain 24 hour data at class locations.
- NDDOT also uses permanent Automatic Traffic Recorders (ATRs) that collect traffic data every day throughout the year
- Both methods collect traffic based on Class FHWA scheme "F" 13 vehicle classification tree
- Classification scheme is how the ATR's and the portable counters "see" the various truck axle configurations

FHWA 13 Vehicle Classification (Scheme F)

(Scheme F) without Classes 1-4

Equivalent Single Axle Load (ESAL)

- <u>ESAL</u>- is the relationship between axle weight and pavement damage.
- The reference axle load is an 18,000-lb. single axle with dual tires.
- Developed by the American Association of State Highway Officials (AASHO) Road Test

Loaded ESAL Values by Truck type

Based on AASHTO Guide for Design of Pavement Structures 1993 – Appendix D Assumed Pt= 2.5 & Sn=2

- The Sn changes based on the cross section of the existing roadway
- 4 inches of Asphalt and 10 inches of Base would represent a Sn=2

Loaded ESAL Values by Truck type

Based on AASHTO Guide for Design of Pavement Structures 1993 – Appendix D Assumed Pt= 2.5 & Sn=2

- The Sn changes based on the cross section of the existing roadway
- 4 inches of Asphalt and 10 inches of Base would represent a Sn=2

Loaded ESALs by Vehicle Class Distribution

Class Type	% Туре	Truck Volume	Number of Trucks	Flex ESAL Rate (loaded)	Flexible ESALS Per Type	Weight (LBS)
Class 5	5	1000	50	1.768	88.4	32,000
Class 6	2	1000	20	1.278	25.56	46,000
Class 7	1	1000	10	1.207	12.07	58,000
Class 8	12	1000	120	2.848	341.76	66,000
Class 9	66	1000	660	2.358	1556.28	80,000
Class 10	6	1000	60	1.872	112.32	88,000
Class 11	1	1000	10	6.478	64.78	92,000
Class 12	1	1000	10	5.988	59.88	105,500
Class 13	6	1000	60	2.874	172.44	105,500
				Total=	2433.4	9 ESALs

<u>Difference in Assuming all trucks are in a</u> <u>certain vehicle Class</u>

- 1000 trucks x 2.358 ESALs (**Class 9**)= 2358 ESALs
- 1000 trucks x 2.874 ESALs (Class 13)= 2874 ESALs
- Difference between Class 13 & Class 9
 2874 -2358 = <u>516 ESALs</u>
- 516 ESALs x 365 days in a year x 20 years equals a difference of <u>3,766,800 ESALs</u>.
- By not knowing what class of trucks that are on the roadway can have a significant impact on the design.

Traffic Estimate

- After the traffic count is taken and ESALs calculated a growth rate is applied.
- There are no set standard growth rates.
- Growth rates are usually based on traffic history, economic activity in the area & local knowledge of future traffic generators.
- The information then gets sent to materials for their part.

Part I – ADT & ESALS – Nickie Reis, P&AM Part II – Structural Numbers – Tom Bold, M&R (or, NDDOT AASHTO Pavement Design Inputs)

Highway Performance Class & Investment Strategies

AASHTO Flexible Pavement Design Equation

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

AASHTO Flexible Pavement Design Equation

Predicted Damage over the Design Period (Accumulated ESALs)

Pavement Structure Required Based on:

- Available Foundation Soil Strength
- Condition at the End of the Design Period
- Acceptable Level of Risk

Design Input Factors

- Z_R = <u>Reliability Factor</u>
- S_o = <u>Standard Deviation</u>
- SN = <u>Structural Number</u>
- △PSI = <u>Serviceability Index</u>
- M_R = <u>Subgrade Resilient Modulus</u> (in psi)

Traffic Counts & Future Growth Rate

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

W₁₈ = <u>Total Accumulated Flexible ESALs for Pavement Design Period</u>

• Predicted Number of 18,000 lb. Axle Loadings (1 - 18kips = ESAL)

Where:

- T = Two-Way Daily Flexible ESALs
- i = Growth Rate
- n = Design Period, (20 years for flexible pavements)

$Z_R = Reliability$

 $\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$

Z_R = <u>Reliability Factor (Risk)</u>

NDDOT Performance Class	New Construction (Reliability %)	Rehabilitation (Reliability %)
Interstate	90%	85%
Interregional Corridor	85%	80%
State Corridor	80%	80%
District Corridor	75%	75%
District Collector	70%	70%

S₀ = Standard Deviation

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

S_o = <u>Standard Deviation</u>

- Combined Standard Error of the Traffic Prediction and Performance Prediction
- NDDOT uses 0.49

SN = <u>Structural Number</u>

- Indicative of the total pavement thickness required SN = $a_1D_1 + a_2D_2m_2 + a_3D_3m_3 + ...$
 - where: $a_i = i^{th}$ layer coefficient $D_i = i^{th}$ layer thickness (inches) $m_i = i^{th}$ layer drainage coefficient

New or Reconstructed Pavements

SN =
$$a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3 + ...$$

- a_i = ith Layer Coefficient
 - New HBP Superpave Material

20 yr. Accumulated Design ESALS

< 400,000	FAA 40	= 0.34
400,000 to < 1,000,000	FAA 42-43	= 0.36
1,000,000 to 3,000,000	FAA 44	= 0.38
>3,000,000	FAA 45	= 0.40

a₁D

 $a_2 D_2 m_2$

New Cold In-Place Recycling

= 0.25

a₁∪

 $a_2 D_2 m_2$

 $a_3D_3m_3$

FAA 45

Structural Overlays

SN =
$$a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3 + ...$$

- $a_1 = i^{th}$ Layer Coefficient
 - New HBP Superpave Material

20 yr. Accumulated Design ESALS< 400,000</td>FAA 40400,000 to < 1,000,000</td>FAA 42-431,000,000 to 3,000,000FAA 44

- >3,000,000
- $a_2 = i^{th}$ Layer Coefficient
 - Existing HBP Material

= 0.25

= 0.34

= 0.36

= 0.38

= 0.40

Bituminous Recommendations

Performance Graded Binders

- Selection Based on Project Type & ESALs
 - New or Reconstruction
 - Lower lifts PG 58-28
 - Upper Lifts PG 58-34, 64-28/34, 70-28, 76-28
 - Overlays
 - PG 58-28, 64-28, 70-28, 76-28

20 yr. Accumulated Design ESALS

- Aggregate Base:
 - Sand Base = 0.06
 - Class 3 = 0.08
 - Class 5 = 0.10
- Emulsified Base = 0.10 to 0.20
- Blended Base = 0.10
- New Cement Treated Base = 0.18
- New Cement Treated Subgrade = 0.12

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

**SN =
$$a_1 D_1$$
 + $a_2 D_2 m_2 + a_3 D_3 m_3 + ...$**

- D_i = ith Layer Depth Thickness
 - Existing Materials
 - Pavement
 - Milestone Cores Obtained by District Personnel
 - RIMS Historical Data
 - Base
 - Field Aggregate Depth Checks
 - RIMS Historical Data

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

$$SN = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3 + ...$$

- D_i = ith Layer Depth Thickness
 - New Materials
 - Pavement
 - 1:3 Ratio (HBP : Base)
 - Design Thickness is Rounded to the Nearest ¹/₂ inch
 - Base
 - Thicker Bases Perform Better
 - Typical Base Thickness 8",12",15",18" ,etc.

$$SN = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3 + \dots$$

• m_i = ith Drainage Coefficient

• Aggregated Bases Generally Provide Some Level of Drainage

• NDDOT Uses Drainage Coefficient of 1.0

△PSI = Serviceability

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

 $p_o - p_t = \Delta PSI$

p_o = 4.5 (Initial Serviceability)

p_t = 2.5 (Terminal Serviceability)

 $\Delta PSI = 2.0$ (Serviceability Index)

M_R= Subgrade Modulus

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

M_R = <u>subgrade resilient modulus</u> (in psi)

- FWD Field Data or Historical Data
- Typical NDDOT Design 4,000psi to 7,000psi

Flexible Pavement Design

NDDOT Approach Summary:

- Traffic
 - ESALs Counts & Classifications of Vehicles
 - Estimation of Growth Rate *Predicting Future Corridor Usage*
- Pavement Structure
 - Subgrade Strength FWD / Field Data Analysis
 - Existing Section Field Investigation or Historical Data
 - Design Reliability *Highway Performance Class System*
 - Materials Structural Coefficients
- Bituminous Recommendation
 - Based on Project Type and ESALs Pavement Design

Questions?

