2015 North Dakota Asphalt Conference

NDDOT Implementation of AASHTO Flexible Pavement Design

Part I – ADT & ESALs – Nickie Reis, P&AM Part II – Structural Numbers – Tom Bold, M&R

March 31 - April 1, 2015

Part I – ADT & ESALs – Nickie Reis, P&AM Part II – Structural Numbers – Tom Bold, M&R

Process of going from traffic counts to ESALs (Equivalent Single Axle Load)

It all begins with Traffic!

- Without a quality traffic count everything is based on assumptions or best estimates.
- A traffic count doesn't do much good if it has incorrect data.

Traffic Counts

- NDDOT collects traffic using portable Automatic Data Recorders (ADRs) to obtain 24 hour data at class locations.
- NDDOT also uses permanent Automatic Traffic Recorders (ATRs) that collect traffic data every day throughout the year
- Both methods collect traffic based on Class FHWA scheme "F" 13 vehicle classification tree
- Classification scheme is how the ATR's and the portable counters "see" the various truck axle configurations

FHWA 13 Vehicle Classification (Scheme F)

(Scheme F) without Classes 1-4

Equivalent Single Axle Load (ESAL)

- ESAL- is the relationship between axle weight and pavement damage.
- The reference axle load is an 18,000-lb. single axle with dual tires.
- Developed by the American Association of State Highway Officials (AASHO) Road Test

Loaded ESAL Values by Truck type

Based on AASHTO Guide for Design of Pavement Structures 1993 – Appendix D Assumed Pt= 2.5 & Sn=2

- The Sn changes based on the cross section of the existing roadway
- 4 inches of Asphalt and 10 inches of Base would represent a Sn=2

Loaded ESAL Values by Truck type

Based on AASHTO Guide for Design of Pavement Structures 1993 – Appendix D

Assumed Pt= 2.5 & Sn=2

- The Sn changes based on the cross section of the existing roadway
- 4 inches of Asphalt and 10 inches of Base would represent a Sn=2

Loaded ESALs by Vehicle Class Distribution

Difference in Assuming all trucks are in a certain vehicle Class

- 1000 trucks x 2.358 ESALs (**Class 9**)= 2358 ESALs
- 1000 trucks x 2.874 ESALs (**Class 13**)= 2874 ESALs
- Difference between Class 13 & Class 9 2874 -2358 = 516 ESALs
- 516 ESALs x 365 days in a year x 20 years equals a difference of **3,766,800 ESALs**.
- By not knowing what class of trucks that are on the roadway can have a significant impact on the design.

Traffic Estimate

- After the traffic count is taken and ESALs calculated a growth rate is applied.
- There are no set standard growth rates.
- Growth rates are usually based on traffic history, economic activity in the area & local knowledge of future traffic generators.
- The information then gets sent to materials for their part.

Part I – ADT & ESALs – Nickie Reis, P&AM Part II – Structural Numbers – Tom Bold, M&R (or, NDDOT AASHTO Pavement Design Inputs)

Highway Performance Class & Investment Strategies

AASHTO Flexible Pavement Design Equation

$$
\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07
$$

AASHTO Flexible Pavement Design Equation

Predicted Damage over the Design Period (Accumulated ESALs)

=

Pavement Structure Required Based on:

- Available Foundation Soil Strength
- Condition at the End of the Design Period
- Acceptable Level of Risk

Design Input Factors

$$
W_{18} = \text{Accumulated ESALS}
$$

- **Z^R** = *Reliability Factor*
- **S^o** = *Standard Deviation*
- **SN** = *[Structural Number](http://training.ce.washington.edu/wsdot/Modules/06_structural_design/06-3_body.htm#sn)*
- D**PSI** = *S[erviceability Index](http://training.ce.washington.edu/wsdot/Modules/09_pavement_evaluation/09-6_body.htm#psi)*
- **M^R** = *[Subgrade Resilient Modulus](http://training.ce.washington.edu/wsdot/Modules/04_design_parameters/04-2_body.htm#mr) (in psi)*

Traffic Counts & Future Growth Rate

$$
\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07
$$

W¹⁸ = *Total Accumulated Flexible ESALs for Pavement Design Period*

• Predicted Number of 18,000 lb. Axle Loadings (1 - 18 kips = ESAL)

•
$$
T/2 \times 365 \times \left[\frac{(1+i)^n - 1}{i} \right]
$$

Where:

- T = Two-Way Daily Flexible ESALs
- $i =$ Growth Rate
- n = Design Period, (20 years for flexible pavements)

Z^R = Reliability

 $\log_{10}(W_{18}) = \frac{Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$

Z^R = *Reliability Factor (Risk)*

S^O = Standard Deviation

$$
\log_{10}(W_{18}) = Z_R \times \frac{S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07
$$

S^o = *Standard Deviation*

- Combined Standard Error of the Traffic Prediction and Performance Prediction
- NDDOT uses 0.49

- Indicative of the total pavement thickness required $SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3 + ...$
	- where: $a_i = i^{th}$ layer coefficient D_i = ith layer thickness (inches) m_i = ith layer drainage coefficient

New or Reconstructed Pavements

$$
SN = \boxed{a_1b_1 + a_2b_2m_2 + a_3b_3m_3 + \dots}
$$

- $a_i = i^{th}$ Layer Coefficient
	- New HBP Superpave Material

20 yr. Accumulated Design ESALS $<$ 400,000 FAA 40 = 0.34 400,000 to $<$ 1,000,000 FAA 42-43 = 0.36 1,000,000 to 3,000,000 FAA 44 $= 0.38$ $>3,000,000$ FAA 45 $= 0.40$

 a_1D

 $a_2D_2m_2$

• New Cold In-Place Recycling $= 0.25$

Structural Overlays

$$
SN = \boxed{a_1}_{1} + \boxed{a_2}_{2} + \boxed{a_3}_{3} + \dots
$$

- $a_1 = i^{th}$ Layer Coefficient
	- New HBP Superpave Material

 a_1 D

 $a_2D_2m_2$

 $a_3D_3m_3$

- $a_2 = i$ th Layer Coefficient
	- Existing HBP Material $= 0.25$

Bituminous Recommendations

Performance Graded Binders

- Selection Based on Project Type & ESALs
	- New or Reconstruction
		- Lower lifts PG 58-28
		- Upper Lifts PG 58-34, 64-28/34, 70-28, 76-28
	- Overlays
		- PG 58-28, 64-28, 70-28, 76-28

20 yr. Accumulated Design ESALS

$$
\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}\left(\frac{(SN+1)}{4.2-1.5}\right) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2-1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07
$$

$$
SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3 + \dots
$$

- $a_i = i$ th Layer Coefficient
	- o New & Existing Base Materials
		- Aggregate Base:
			- Sand Base $= 0.06$
			- Class 3 $= 0.08$
			- Class 5 $= 0.10$
		- Emulsified Base $= 0.10$ to 0.20
		- \blacksquare Blended Base $= 0.10$
		- New Cement Treated Base $= 0.18$
		- New Cement Treated Subgrade $= 0.12$

$$
\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}\left(\frac{SN+1}{(SN+1)}\right) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07
$$

$$
SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3 + \dots
$$

- D_i = ith Layer Depth Thickness
	- o Existing Materials
		- **Pavement**
			- Milestone Cores Obtained by District Personnel
			- RIMS Historical Data
		- **Base**
			- Field Aggregate Depth Checks
			- RIMS Historical Data

$$
\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}\left(\frac{(SN+1)}{4.2-1.5}\right) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2-1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07
$$

$$
SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3 + \dots
$$

- D_i = ith Layer Depth Thickness
	- o New Materials
		- **Pavement**
			- 1**:**3 Ratio (HBP **:** Base)
			- Design Thickness is Rounded to the Nearest 1/2 inch
		- **Base**
			- Thicker Bases Perform Better
			- Typical Base Thickness 8",12",15",18" ,etc.

$$
SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3 + \dots
$$

• $m_i = i^{th}$ Drainage Coefficient

o Aggregated Bases Generally Provide Some Level of Drainage

o NDDOT Uses Drainage Coefficient of 1.0

D*PSI = Serviceability*

$$
\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}\left(M_R\right) - 8.07
$$

 \mathbf{p}_{o} - \mathbf{p}_{t} = Δ PSI

p^o = 4.5 (Initial Serviceability)

 $p_t = 2.5$ (Terminal Serviceability)

D**PSI = 2.0 (Serviceability Index)**

MR= Subgrade Modulus

$$
\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}\left(M_R\right) - 8.07
$$

MR = [subgrade resilient modulus](http://training.ce.washington.edu/wsdot/Modules/04_design_parameters/04-2_body.htm#mr) (in psi)

- **FWD Field Data or Historical Data**
- **Typical NDDOT Design – 4,000psi to 7,000psi**

Flexible Pavement Design

NDDOT Approach Summary:

- **Traffic**
	- **ESALs –** *Counts & Classifications of Vehicles*
	- **Estimation of Growth Rate –** *Predicting Future Corridor Usage*
- **Pavement Structure**
	- **Subgrade Strength –** *FWD / Field Data Analysis*
	- **Existing Section** *- Field Investigation or Historical Data*
	- **Design Reliability –** *Highway Performance Class System*
	- **Materials –** *Structural Coefficients*
- **Bituminous Recommendation**
	- **Based on Project Type and ESALs –** *Pavement Design*

Questions?

