## Research Projects ND 2011-02, UND 2011-01, & NDSU 2011-02

Kyle Evert. NDDOT - Materials & Research Division



Topics

- MR 2011-02 Evotherm 3G, Advera WMA and Foamed Asphalt Comparison
  - Objective
  - Scope
  - Evaluation
  - Construction
- UND 2011-01 Evaluation of the Rut Resistance Performance of Warm Mix Asphalts in North Dakota
- NDSU 2011-02 Warm Mix Asphalt Processes Applicable to North Dakota



## MR 2011-02 Objective

• The objective of this project is to compare the

performance of WMA produced using Evotherm 3G,

Advera® WMA, and the foamed asphalt process.



# Scope

- This research project will use thin lift paving projects to evaluate the WMA production processes and performance.
  - SS-3-015(010)060-Evotherm 3G WMA, Foamed Asphalt, & HMA
  - SS-3-015(018)073-Evotherm 3G WMA, Foamed Asphalt, & HMA
  - SS-4-003(011)159-Advera® WMA & HMA
  - SS-4-041(012)057-Advera® WMA & HMA
  - SCB-6-032(045)219-Evotherm 3G WMA with recycled asphalt & HMA with recycled asphalt



## Evaluation

#### **Pavement Distress**

- Rutting measurements
- Thermal cracks
- Cracking distresses caused by loading and traffic

#### Construction

- Density
- Temperature
- Fuel Consumption



## SS-3-041(012)057

- 2" Thin Lift Overlay
- Advera® WMA
- Approximately 5 miles of WMA
- Approximately 5 miles of HMA for Control
- Blade Leveling





# SS-3-041(012)057 Photos





# SS-3-041(012)057 Photos





## SS-3-041(012)057 Compaction Control

#### ND 41 - WMA Compaction Control

| Date                                                                                 | Core Density | Maximum<br>Theoretical<br>Density | Compaction |  |  |
|--------------------------------------------------------------------------------------|--------------|-----------------------------------|------------|--|--|
| Average                                                                              | 142.6        | 153.0                             | 93.2%      |  |  |
| ND 41 - HMA Compaction Control                                                       |              |                                   |            |  |  |
| DateCore DensityMaximumDateCore DensityTheoreticalCompactionDensityDensityCompaction |              |                                   |            |  |  |
| Average                                                                              | 141.2        | 153.7                             | 91.9%      |  |  |



## SS-3-041(012)057 Fuel Consumption

ND 41 - WMA Fuel Consumption

| Туре          | Gallons of Burner<br>Fuel | Total Tons of Mix | Gal/Ton |
|---------------|---------------------------|-------------------|---------|
| Total/Average | 13,564                    | 9,674             | 1.39    |

#### ND 41 - HMA Fuel Consumption

| Туре          | Gallons of Burner<br>Fuel | Total Tons of Mix | Gal/Ton |
|---------------|---------------------------|-------------------|---------|
| Total/Average | 17,315                    | 11,995            | 1.44    |



#### SS-3-041(012)057 Field Temperatures

ND 41 Field Temperatures - WMA vs. HMA





# SS-6-032(045)219

- 2" mill and fill
- Evotherm 3G
- Use of recycled asphalt
- Approximately 5 miles of WMA
- Approximately 5 miles of HMA used for control
- Evotherm mixed by supplier





# SS-6-032(045)219





# SS-6-032(045)219





### SS-6-032(045)219 Compaction Control

#### ND 32 - WMA Compaction Control

| Date                           | Core Density | Maximum<br>Theoretical<br>Density | Compaction |
|--------------------------------|--------------|-----------------------------------|------------|
| Average                        | 138.8        | 150.1                             | 92.5%      |
| ND 32 - HMA Compaction Control |              |                                   |            |
| Date                           | Core Density | Maximum<br>Theortical<br>Density  | Compaction |
| Average                        | 139.6        | 150.7                             | 92.6%      |



### SS-6-032(045)219 Fuel Consumption

ND 32 - WMA Fuel Consumption

| Туре          | Gallons of Burner<br>Fuel | <b>Total Tons of Mix</b> | Gal/Ton |
|---------------|---------------------------|--------------------------|---------|
| Total/Average | 11,652                    | 7,429                    | 1.62    |

#### ND 32 - HMA Fuel Consumption

| Туре          | Gallons of Burner<br>Fuel | Total Tons of Mix | Gal/Ton |
|---------------|---------------------------|-------------------|---------|
| Total/Average | 15,232                    | 8,958             | 1.72    |



### SS-6-032(045)219 Field Temperatures

ND 32 Field Temperatures - WMA vs. HMA





SS-4-003(011)159

- 2" Thin Lift Overlay
- Advera® WMA
- Approximately 5 miles of WMA
- Approximately 5 miles of HMA used for control
- Blade Leveling



## SS-4-003(011)159 Compaction Control

ND 3 - WMA Compaction Control

| Date                                                                                 | <b>Core Density</b> | Maximum<br>Theortical Density | Compaction |  |  |
|--------------------------------------------------------------------------------------|---------------------|-------------------------------|------------|--|--|
| Average                                                                              | 142.7               | 153.7                         | 92.8%      |  |  |
| ND 3 - HMA Compaction Control                                                        |                     |                               |            |  |  |
| DateCore DensityMaximumDateCore DensityTheoreticalCompactionDensityDensityCompaction |                     |                               |            |  |  |
| Average                                                                              | 141.7               | 153.8                         | 92.1%      |  |  |



## SS-4-003(011)159 Fuel Consumption

ND 3 - WMA Fuel Consumption

| Туре                         | Gallons | <b>Total Tons</b> | Gal/Ton |  |  |
|------------------------------|---------|-------------------|---------|--|--|
| Total/Average                | 13,168  | 9,467             | 1.38    |  |  |
| ND 3 - HMA Fuel Consumption  |         |                   |         |  |  |
| TypeGallonsTotal TonsGal/Ton |         |                   |         |  |  |
| Total/Average                | 14,473  | 8,861             | 1.63    |  |  |



### SS-4-003(011)159 Field Temperatures

ND 3 Field Temperatures - WMA vs. HMA





# Missing Data

#### SS-3-015(010)060 & SS-3-015(018)073 – Project was pushed until 2012





- 26,569 tons of WMA in 2011.
- Compaction is not an issue.
- Fuel Consumption 3.5% to 15.4% decrease in burner fuel with WMA.
- Field Temperature
  - Advera WMA 10 degrees less HMA behind paver
  - Evotherm WMA 25 degrees less HMA behind paver
- ND 15 project has been pushed until 2012 construction season.



- Asphalt Pavement Analyzer (APA)
- 32 six inch φ cores collected from 2010 WMA projects
- 12 wet cores and 12 dry cores tested
- 8,000 Loading Cycles per test





# 2010 WMA Projects

- ND 11- near Ashley ND
  - 8,319 tons of Evotherm WMA
  - 2" overlay
  - Crack Pattern returned but no rutting.
- ND 20 Near Devils Lake
  - 15,113 tons of Evotherm WMA
  - 2" overlay
  - Crack Pattern returned but no rutting.
- Both Experimental projects have same distresses as control sections.



## Asphalt Pavement Analyzer (APA)















- Generally, WMAs had higher rut values in comparison with the HMA control specimens
  - Dry Condition: WMA higher by 13%
  - <u>Wet Condition</u>: WMA higher by 29%
- 19 specimens passed the 9.0 mm criterion
  - The failed 5 were WMA (3 dry & 2 wet)
  - 6 out of the 7 WMA specimens that passed had rut values
    > 8.0 mm



#### NDSU – Warm Mix Asphalt Processes Applicable to North Dakota

- Research by Magdy Abdelrahman
- Literature review and survey of surrounding states additives and processes.
- Recommendation of techniques, equipment, and additives are provided in this research.

• Available at

www.dot.nd.gov/divisions/materials/researchlist.htm



## **Questions?**

