

USA Today on 3/16/2011

- ND has third smallest population in US
 - Half the growth rate of the US average
- Lowest unemployment rate
 - Under 5 percent since 1987
- Greatest advance in per capita income
- \$1B state budget surplus
 - \$1B annual agricultural subsidies
 - Oil boom in western North Dakota

YEARS 1986 - 2011 National Center for Asphalt Technology

at AUBURN UNIVERSITY

Current NCAT Research Areas

- High recycled content mixes
- Warm mix asphalt
- Pavement preservation
- Optimized structural design
- Alternative binder materials
- Drainable, quiet pavements
- Automated QC technologies

Accelerated Performance Testing

Test Track Layout

Thinner Structural Test Sections

Track Research Program

- Optimize pavement thickness design
- Identify ideal mixes, materials, methods, etc.

Build-traffic₂-forensics in 3-year research cycles

Changes to Design Gradations

- 2000 All mixes on coarse side of MDL
 - High design gyrations led to very dry mixes
 - Low durability resulted from poor compaction
- 2003 Complete overhaul of methodology
 - Surface mixes required on fine side of MDL
 - Base and binder lifts optional coarse or fine

Changes to Mix Materials

- Optimized use of polymer binders
- Absorptive gravels in dense, SMA, OGFC
- Off network proof test for polishing
- Threshold properties for SMA aggregates
- High friction surface treatments
- Deicing aggregates in surface treatments

Changes to Design Gyrations

- 1998 139 gyration designs
- 2000 100 gyration designs
- 2003 80 gyration designs
- 2006 60 gyration designs
 - Via locking point (2 gyrations)

Low QC Air Voids_{Neat AC, Ndes=60}

Pavement Preservation

Comparable Performance

VERSITY

Thin Lift Laboratory Experiment

- Two screenings stockpiles identified (LMS & GRV)
- Blended 70/30 to match proven gradation in W6
- APA tests with binder contents at 6.0, 6.5, 7.0, & 7.5
 - Control mixes are W6-like with both PG76 & PG67

Thin Lift Laboratory Experiment

- Two screenings stockpiles identified (LMS & GRV)
- Blended 70/30 to match proven gradation in W6
- APA tests with binder contents at 6.0, 6.5, 7.0, & 7.5
 - Control mixes are W6-like with both PG76 & PG67
- Treatment mixes to target PG76-like performance:
 - Wool fibers
 - Thiopave sulfur pellets
 - Trinidad Lake Asphalt (TLA) pellets
 - iBind (in both PG67 and PG76)

Gradation Comparison

APA Rut Depths

APA Rut Depths

GTR-Modified PG76-22

Perpetual Pavement on Soft Clay

14" pavement looks good after 17 million ESALs

- 10" pavement recently rehabilitated for 2nd time
 - In need of 1st rehabilitation after 10 million ESALs
 - 5" mill/inlay failed <u>again</u> after 3 ½ million ESALs
 - 2½ million ESALs on 5-3/4" high polymer inlay

Thin Perpetual Pavements

- 24 inch perpetual (original) Track foundation
 - Designed with '93 Guide for MANY cycles
- Two 9 inch thick structural sections in 2003
 - '93 Guide predicted failure near 10M ESALs
 - 27M ESALs to date (perpetual expectation)
- 15 inches of wasted (excess) thickness?

10 inches not enough on N8 soft subgrade

PG67 in 2006 High RAP Surfaces

- 7 section high RAP study (including control)
- 45% RAP with PG52, PG67, PG76, PG76s
- Cracking, raveling in PG76s section
- Minor cracking, raveling in PG76 section
- Similar performance in PG52 and PG67

Benefits of RAP

- Cost
- Quality
- Convenience
- Performance

RAP Economics

- Aggregate: \$15/ton
- Asphalt: \$500/ton
- Mix Design AC Content: 5%

$$$500 \times .05 = $25.00$$

Total Mix
$$=$$
 \$39.25

RAP Economics

- Aggregate: \$15/ton
- Asphalt: \$500/ton
- RAP: \$5/ton (5% AC in RAP)
- Mix Design
 - AC Content: 5%
 - RAP content 20% (19% rock, 1% AC)

$$$5 \times .20 = $1.00$$

Total Mix
$$=$$
 \$32.40

RAP Economics

Virgin Mix: \$39.25/ton

Recycled Mix: \$32.40/ton

@20% RAP, Savings = 17%

Fractionation

2009 Group Experiment (+)

2009 Group Experiment (+)

Effective Asphalt Contents

Gradations of 50% RAP Base/Binder

2009 Group Experiment (+)

2009 Group Experiment (+)

WMA Technologies in the US

Thiopave

Benefits of WMA

- Lower energy cost
- Less binder hardening in plant
- Lower binder absorption into aggregate
- Reduced emissions (plant and roadway)
- Longer hauling distance
- Better compaction on roadway
- No field performance issues identified

2009 Group Experiment (+)

"Volumetrics Plus" for WMA in 9-43

- Mixing/compaction °F via additive provider
- Lab foamers recommended (technology neutral)
- Compactability (N92comp-30F / N92comp ≤ 1.25)
- T283 (≥ 80 percent) and coating test for moisture
- FN with criteria as function of traffic
- Mix °F above PG grade of recycled materials

GE Strain Response

GE Strain Response

GE Strain Response

Performance Expectations

Benefits of RAP+WMA

- Minimizes blended binder aging (stiffness)
- Superheating eliminates baghouse condensation
- Ensures virgin aggregates are properly dried
- Allows plant production rate to increase
- Optimizes economic and environmental benefit
- RAP improves TSRs in WMA (some states require)

Indirect RAP Characterization

Dynamic Modulus

Bending Beam Rheometer

Dynamic Shear Rheometer Torsion Bar

Indirect Tension Relaxation Modulus

www.pavetrack.com

Performance

Home

Sponsors

Information

Construction

Trucking

erformance

Click here for the official NCAT web site, Tracks in US, or Tracks Worldwide

Hort-Hills to download PAYE reports, review upcoming NCAT training courses, query historical weather data, view current color radar or preview local forecast.

Weather at 30,000 feet

1,439, 922 ESALs as of 2300 hours on December 5. Performance data for each section can be viewed by positioning your mouse over the section in question and left-clicking. Based on feedback from our research sponsors, the performance reports have been revised to include crack maps. The 2009 performance reports are now a fully integrated and active part of the web presentation.

Web Performance Reports

Quadrant: 6

3/22/2011

Surface Mix and Materials

Structural Buildup Information

 Year of Completion:
 2005
 Study HMA (in):
 2

 HMA Design Methodology:
 Superpave
 Total HMA (in):
 24

 Specified Binder:
 PG76-22s
 Base Material:
 Grante

 Surface Mtx Stockpile Materials:
 Gm/Lms/Snd (45% RAP)
 Superpave
 Stiff

Research Objective: RAP Mix Construction/Performance w/ Sasobit

Preliminary Field Performance Data

Questions?

