Infrastructure Needs: North Dakota's County, Township, & Tribal Roads & Bridges 2015-2034

#### June 25, 2014

Upper Great Plains Transportation Institute North Dakota State University

NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

## Contents

- History/purpose of road studies
- Data collection/field studies
- Major factors influencing results
- Analysis procedures/models
- Results and distributions of impacts
  - Region
  - Time period
- Next steps



# **Road Infrastructure Studies**

- 2010 study: UGPTI estimated road investment needs for the 2011 session
  - 21,500 new wells & increased ag. production
- 2012 study: updated investment needs
  - 46,000 new wells, ag. production, & initial bridge study
- Current study: more comprehensive data
  - Higher roadway costs, ag. production, & 60,000 new wells

# **Study Horizon**

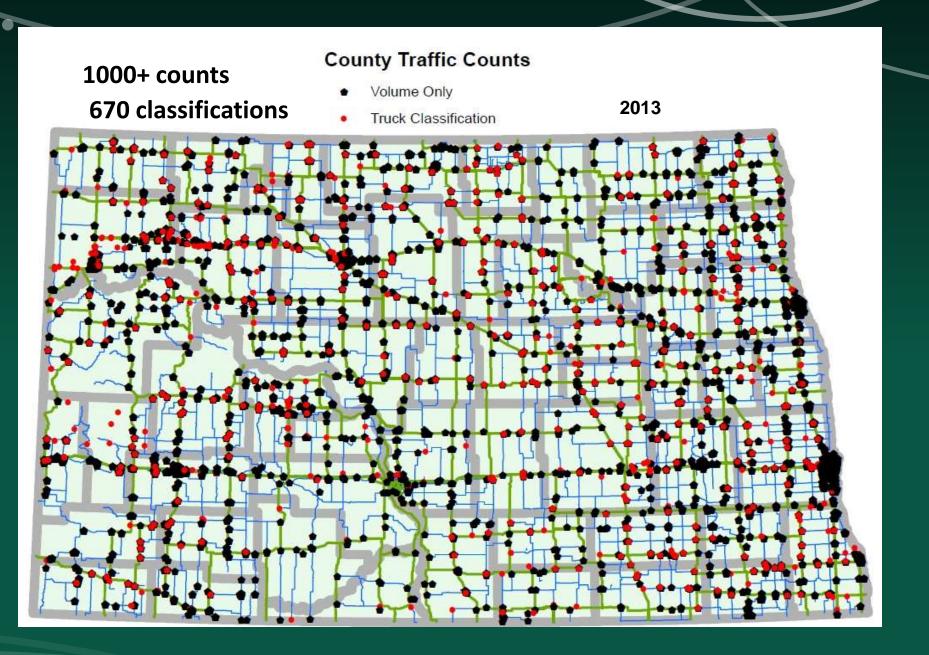
- 20 year time frame
- Traffic and investment needs estimated annually
- Results summarized by:
  - Biennium
  - Region
- Detailed results (by)
  - County
  - Jurisdiction



# Key Factors in Road Study (1)

| Oil and Gas           | Agriculture      |
|-----------------------|------------------|
| Number of wells       | Cultivated acres |
| Well locations        | Crop mix         |
| Production rate/curve | Yield            |
| Inputs/outputs        | Crop densities   |
| Gathering             | Elevator         |
| pipeline              | network          |

# Key Factors in Road Study (2)

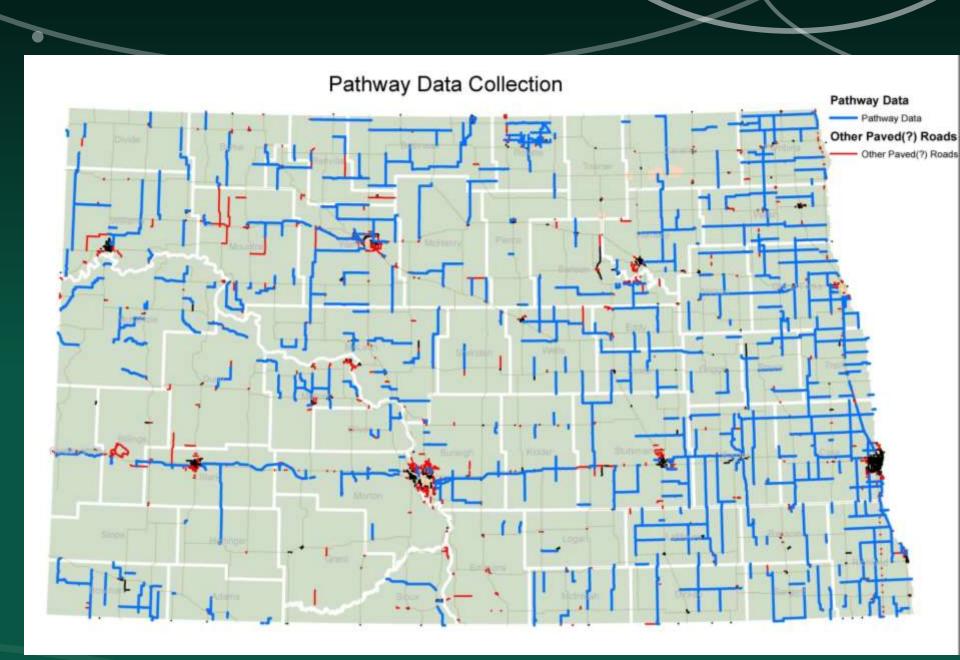

| Traffic             | Road            |
|---------------------|-----------------|
| Truck trips         | Surface type    |
| Truck axles/weights | Width & design  |
| ESALs               | Age & condition |
| Avg. Daily Traffic  | Soil            |

## Data Sources (1)

| Oil production                | ND Oil & Gas Division |
|-------------------------------|-----------------------|
| Pipeline/transload<br>network | ND Pipeline Authority |
| Base road network             | NDDOT GIS Hub         |
| Crop production               | USDA-NASS             |
| Elevator demand               | ND PSC                |

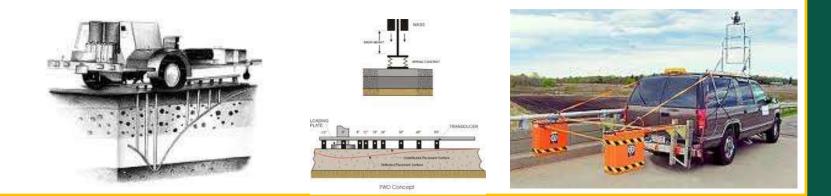
## Data Sources (2)

| Traffic              | Vehicle counts and classifications |
|----------------------|------------------------------------|
|                      | Surveys/elevator reports           |
| Paved road condition | Pathways/surveys                   |
| Paved road structure | Falling Weight Deflector           |
|                      | Ground Penetrating Radar           |
| Unpaved roads        | Surveys                            |




#### **Pavement Data Collection**

- Condition data
  - NDDOT Pathway van
  - Summer/fall 2013




- 4,786 miles of paved county roads
- Pavement and shoulder width data
  - Scaled from video images 4500 miles



#### **Pavement Data Collection**

- Non-destructive testing verify prior estimates on subgrade strength
  - Falling Weight Deflectometer (FWD) and Ground Penetrating Radar (GPR)
  - Western ND all rural pavements not recently improved, not under construction, and not in failure state (785 mi)
  - Eastern ND selected based on agricultural production facilities and other major traffic generators (734 mi)



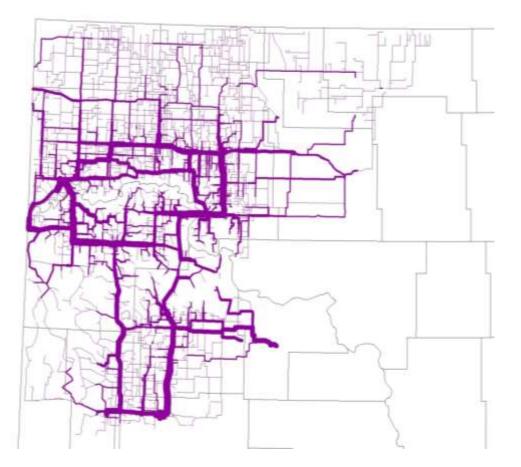


## **Modeled Movements**

- Agriculture
  - Wheat (including durum), corn, soybeans, barley, canola, sunflowers, sugar beets, potatoes, & beans
  - Fertilizer movements
  - Transshipments
- Oil Exploration/Production
  - Freshwater, sand, equipment, supplies, pipe, outbound saltwater, & outbound crude oil

## **Agriculture Production Forecasts**

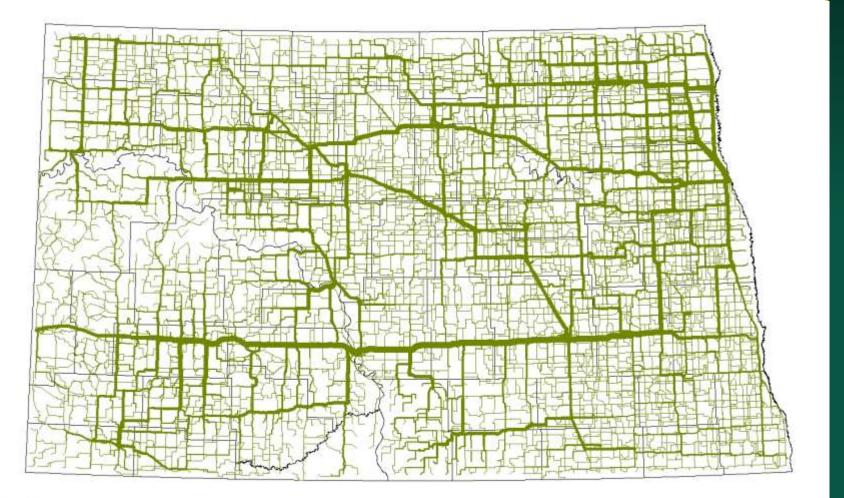
- Production data: ND-NASS
- Production estimated at township level
- Elevator and plant demands from NDPSC and industry groups
- Forecasts of future production, yield and mix derived from multiple sources
  - USDA/NASS
  - NDSU/Extension
  - Industry


## **Oil Development**

- 2,300 truck trips per new well (drilling related)
  - 3 million gallons of freshwater
  - 4 million pounds of sand
- Initial production (IP) rate varies by county
- Outbound oil to transload locations
  - Base year: 67% truck, 33% pipe
  - 2024: 20% truck, 80% pipe,
  - 2,400 new miles of gathering pipeline/year

## Forecasting/Modeling Process

| Trips generated       | Trips originated or terminated      |
|-----------------------|-------------------------------------|
|                       | E.g., wells and farms               |
| Trips attracted       | Rail & pipeline transfer facilities |
|                       | Grain elevators                     |
| Routes taken          | Fastest path                        |
| Truck trips: segment  | Oil-related, agrelated, other       |
| Calibration           | Traffic data                        |
| Truck types and loads | Annual ESALs                        |


## **Oil Exploration Traffic Projections**



Example of predicted traffic flows over road network

Crude oil movements

## **Crop Movement Projections - Wheat**

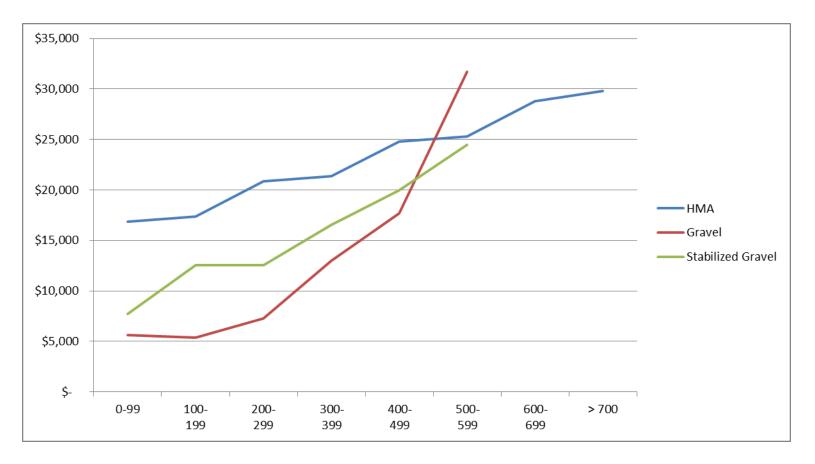


NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

## **Unpaved Road Analysis**

- Unpaved road miles grouped by traffic volume categories
- "Normal" practices established for each county based upon traffic observations and reported maintenance practices
- For traffic volumes above normal levels responses for oil impacted roads used to establish upper categories of maintenance

## **Unpaved Improvement Types**


- Traffic Category Improvement
  - Low: low volume average
  - Baseline: county average
  - Elevated: county average increased by 50%
  - Moderate: county average increased by 100%
  - High: county average increased by 150%, dust suppressant
  - Very high: county average increased by 200%, dust suppressant



## To Pave or Not?

- Conversion of gravel roads to hot mix asphalt (HMA) not directly considered, except for highest traffic roads
- Needs for the significantly increased gravel maintenance may be sufficient for paving of some road segments
- Surface type choice left to county
  - Reflect practices and local issues
  - Coordination with an overall planning effort

#### Life Cycle Cost Comparison





#### **Unpaved Road Investment Needs (millions)**

| Period    | Statewide | Oil Patch | Non-Oil   |
|-----------|-----------|-----------|-----------|
| 2015-2016 | \$548.0   | \$299.4   | \$248.6   |
| 2017-2018 | \$547.9   | \$299.2   | \$248.7   |
| 2019-2020 | \$547.5   | \$298.6   | \$248.9   |
| 2021-2022 | \$545.6   | \$296.6   | \$249.0   |
| 2023-2024 | \$541.9   | \$292.7   | \$249.2   |
| 2025-2034 | \$2,667.5 | \$1,422.9 | \$1,244.6 |
| 2015-2034 | \$5,398.4 | \$2,909.4 | \$2,489.0 |

## **Paved Road Analysis Steps**

- AASHTO 1993 Design Guide
- Predict year & type of improvement
- Improvement threshold based on pavement condition
- Year of improvement based on:
  - Existing structural capacity
  - Existing condition
  - Forecasted ESALs



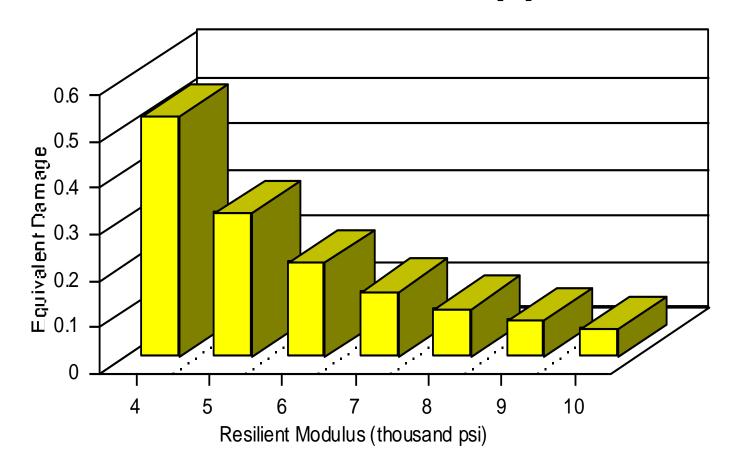
#### ESAL Factors: Single Axle



## Paved Road Improvements/Maint.

- Improvement type
  - Overlay
  - Sliver widening
  - Reconstruction
  - Mine & blend
- Normal maintenance
  - Chip seals
  - Crack sealing and patching
  - Other

### **Paved Road Improvement Criteria**


- Reconstruction
  - Condition and traffic volume
  - Subgrade modulus
  - Rutting
- Mine & Blend
  - Condition and traffic volume
  - Widening needed but thin/weak base
- Overlay
  - Pavement condition



## Pavement Serviceability Rating (PSR)

| PSR Range | General Rating |
|-----------|----------------|
| 5 to 4    | Very Good      |
| 4 to 3    | Good           |
| 3 to 2    | Fair           |
| 2 to 1    | Poor           |
| 1 to 0    | Very Poor      |

## **Effects of Soil Support**



## **Paved Road Improvements**

| Туре        | Miles | Percent |
|-------------|-------|---------|
| Resurface   | 5,005 | 88.1%   |
| Reconstruct | 253   | 4.5%    |
| Mine/Blend  | 219   | 3.9%    |
| Widen       | 201   | 3.5%    |

#### Paved Road Investment Needs (millions)

| Period    | Statewide        | Oil Patch | Non-Oil |
|-----------|------------------|-----------|---------|
| 2015-2016 | \$377            | \$186     | \$191   |
| 2017-2018 | \$323            | \$120     | \$203   |
| 2019-2020 | \$285            | \$158     | \$127   |
| 2021-2022 | \$236            | \$133     | \$103   |
| 2023-2024 | \$138            | \$52      | \$86    |
| 2025-2034 | \$1,326          | \$513     | \$812   |
| 2015-2034 | \$2 <i>,</i> 685 | \$1,162   | \$1,522 |

## **Bridge Analysis**

- NBI: county and local
- Open bridges (other than culverts):
  2,556
- Not considered: recently replaced or minimum maintenance roads
- Improvements considered: replacement or rehabilitation
- Maintenance



## Bridges Costs (1)

- Unit cost model
  - Based on 2011-2014 NDDOT bid reports
  - Discussed with NDDOT & counties
  - Includes approach roadway, engineering, etc.
- Replacement cost projections:
  - Bridges: \$250-\$275/sf. deck area
  - Culverts: \$400,000-\$600,000 /project

## Bridges Costs (2)

- Rehabilitation
  - Deck widening 50% replacement cost
  - Deck replacement 45% replacement cost
- Preventive maintenance
  - Annualized maintenance cost \$0.24 per sq. ft./year
  - \$0.29 per sq. ft. deck washing/sealing

## **Bridge Investment Needs**

- 2015-2034: \$327 million
- 77% of costs for replacements
- Backlog of 480+ bridges
- Backlog spread over 5 biennia
- Approx. \$70 million per biennium

# **Next Steps**

- Feedback from Legislature, NDDOT, and counties
- Written report/documentation (July 8)
- Detailed maps and data tables posted on webpage (July 8)
- Additional study requests

# Questions?

Denver Tolliver 701-231-7190 denver.tolliver@ndsu.edu

www.ugpti.org/

NDSU UPPER GREAT PLAINS TRANSPORTATION INSTITUTE

## Addendum

- Consideration of converting very high traffic (500+ trucks/day)gravel miles to asphalt
- 37 miles @ \$1.5 million/mile = \$58M

| Category           | 2014 Dollars       |
|--------------------|--------------------|
|                    | 2015-2016 Biennium |
| Gravel Needs       | \$548M             |
| Gravel to Pavement | \$58M              |
| Paved Needs        | \$377M             |
| Total Road Needs   | \$983M             |