

[^0]

Perform a visual inspection of the bridge deck and approach slab surfaces and mark all visible cracks appearing on the top surface 0.007 " or greater in width at its widest segment or as directed by the Engineer.

Immediately before applying the sealer, clean the cracks by removing all dust and debris with compressed air. Seal the cracks with a two-part epoxy in accordance with the manufacturer's recommendations. Chase crack with the sealant application to limits of crack, including those portions that are narrower than 0.007 " wide. The epoxy sealer may be Paulco TE-2501 (Viking Paints, Inc.), Dural 50 LM (Euclid Chemical Co.), TK9000 or TK-2110 (TK Products), or an approved equal. Include all work and materials associated with the bridge deck and approach slab crack sealing in the price bid for the Class AAE-3 concrete and approach slab bid items.

602 FORM LINERS: Include the cost to provide and install the form liners in the price bid for the appropriate concrete items.

602 BARRIERS: Construct V-grooves that are $3 / 4$ inch wide and $3 / 4$ inch deep in all faces, excluding the form liner areas, of the barriers at the pier and at equal spaces between the pier and abutments at approximately 10 -foot spacing

602 SURFACE FINISH "D": Apply Surface Finish "D" on all exposed substructure surfaces, the fascia and bottom surface of the exterior beams, the outside edges of the pier diaphragm, the outside edges of the deck, the underside of the deck overhang, the exposed endwall areas outside of the exterior beams, and to all bridge and approach slab barrier surfaces except for the recessed form liner areas. Use gray surface finish, color number 36424 meeting Aerospace Material Specification (AMS) Standard 595, for the inside and top surfaces of the bridge and approach slab barriers. Use a color matching the lightest shade of brown in the Architectural Surface Finish, as it looks applied to the barrier form liner areas, for all other surfaces.

Submit to the Engineer a 1' x 1' sample of the brown surface finish.
604 PRESTRESSED BEAMS: Set prestressed beams on bearing seats without field bending substructure or beam reinforcing steel.

622 PREBORING: Bore pilot holes for the abutment and approach slab piling to an elevation of 1787 feet before driving piling. Do not bore pilot holes until all of the constructed embankment is in place. Bore pilot holes to a diameter of 24 inches for the abutment piling and 18 inches for the approach slab piling. Prior to pile driving, backfill the pilot holes with polymer free sodium bentonite slurry. Mix the slurry at a ratio of 100 gallons of water per 120 pounds of bentonite. Use powdered bentonite to mix the slurry. Do not use bentonite chips. Place the slurry in the pilot hole from the bottom up using a tremie pipe. Check the hole after 24 hours for settlement of the slurry and top off the hole with slurry mixed at the previously specified ratio. Repeat this process until no observed settlement of the slurry occurs. Include all costs

This document
is preliminano
and mofor
cennsthuction or
(2) Ontplementation purposes.
associated with boring pilot holes and backfilling with bentonite in the price bid for HP10 x 42 and HP14 x 102 piling.

622 PILING: Drive bridge piling with a diesel hammer with an operational energy of at least 125,048 foot-pound-tons (minimum ram weight of 6,000 pounds) computed by the formula:
$W(E-30,800)+0.812 E$
Drive approach slab piling with a diesel hammer with an operational energy of at least 30,594 foot-pound-tons (minimum ram weight of 2,800 pounds) computed by the formula:
$W(E-12,936)+0.473 E$
W = Weight of the ram (tons)
$\mathrm{E}=$ Operational hammer energy
Run the hammer at an energy that produces a penetration at bearing between $1 / 2{ }^{\prime \prime}$ and 3 inches in the last 10 blows.
Stop driving the pile if bearing is not yet obtained at a depth approximately 10 feet beyond the estimated depth. Wait 24 hours to allow pile setup to occur. After 24 hours warm the hammer with a minimum of 20 blows by striking the ground or timber mats. Restrike the pile with 10 blows to determine if bearing has been achieved. If bearing was not achieved during restrike, continue to drive the pile until bearing is achieved.

930 ROADWAY CANOPY: Construct a canopy above the traveled roadway under the existing structure and under the new structure to protect traffic from falling material. The canopy is an added safeguard and does not relieve the Contractor from any responsibility for the safety of the public.

Submit the canopy details, including materials that will be used, to the Engineer for review. Provide a canopy under the existing structure with a minimum vertical clearance of $15^{\prime}-6 "$ above the traveled roadway and provide a canopy under the new structure with a minimum vertical clearance of 17'-4" above the traveled roadway. Extend the canopy a minimum distance of $5^{\prime}-0^{\prime \prime}$ beyond the outside edge of deck of the structure and a minimum distance of $5^{\prime}-0^{\prime \prime}$ beyond the edge of the driving lanes beneath the structure.

Construct the canopy before removing the concrete superstructure. The canopy must be in place before installing forming for the new deck and remain in place until after the new superstructure is complete. The canopy may be supported from the ground or suspended from the beams. Complete the installation of the canopy in a minimum amount of time and with the least inconvenience to the public.

Remove the canopy after the bridge superstructure is completed. Include all costs for construction, maintenance, and removal of the canopy system for the existing structure and new structure in the contract unit price for "Roadway Canopy."

930 AGGREGATE SLOPE PROTECTION: Place aggregate slope protection on the embankment slopes as shown.

Clear the subgrade of rubbish and vegetation before placing the aggregate slope protection. Thoroughly compact all loose material. Excavate or backfill as required to obtain the plan cross-section or lines and grades established in the field.

The gradation of the material used to form the slope protection is given in the following chart:

Sieve Size	\% Passing
$2 "$	100%
$3 / 4^{\prime \prime}$	$5-35 \%$
$\# 4$	$0-5 \%$

The minimum fractured face requirement of the aggregate is 50% by weight on the portion of the aggregate retained on the No. 4 sieve. To be considered fractured the rock must have at least one fractured face.

Deposit, spread, consolidate, and shape the aggregate by mechanical or hand methods o provide a uniform depth and density and produce a uniform surface appearance Apply MC-250 that meets the requirements of Section 818.02 C, "Medium-Curing Cutback Asphalt" at an approximate rate of 1.8 gallons per square yard. Emulsified asphalts grade CSS-1, CSS-1H, RS-1, or CRS-2 that meet the requirements of Section 818.02 E, "Cationic Emulsified Asphalt," or Section 818.02 F "Anionic Emulsified Asphalt", applied at 2.5 gallons per square yard, can be substituted for MC-250. The bituminous materials are to penetrate to a depth of not less than one-half the required hickness of the aggregate. Protect adjacent structure surfaces against bituminous splatter.

Include all costs for labor, materials, and equipment to complete this work in the unit price bid for "Aggregate Slope Protection."

PLAN

state	project number	SECTION No.	SHEET NO.
ND	BND-IM-1-094(192)164	170	8

QUANTITIES	(ONE ABUTMENT)
CLASS AE-3 CONCRETE	48.4 CY
REINFORCING STEEL	4,780 LBS
GIBBS TOWNSHIP SEPARATION	
(SHOWING REINFORCING)	
ABUTMENT DETAILS	

xxx
xxx
94-164.515-8

xxx

xxx
$x x x$

[^0]:

