Bluetooth as a Reliable, Cost-Efficient TDM Data Collection Method- FM Pilot Study

DST I NOR

Diomo Motuba Associate Research Fellow Transportation Seminar Series December 6, 2011

Outline

- Objectives
- * Need For Study
- * Travel Demand Models
- * TDM OD/Travel Time Data Collection Methods
- Bluetooth Technology
- * Study Area
- * Methodology
- * Data Analysis
- * Results and Conclusions

- Evaluate Bluetooth as reliable cost-efficient EI/EE
 OD/Travel time data collection method
- * Compare Results with TDM Model
- Propose method to estimate length of time required to collect statistically valid Bluetooth OD data in relation to counts

Need for Study

* Unknown EE OD

- Percentage of "interstate" traffic using interstate unknown
- * EE OD study needed to calibrate and validate TDM and Traffic Ops Studies
 - * Previous attempt at EE OD study costly and garbage

Travel Demand Models

- Forecast Traffic at Macro scale
- * Trip Gen
 - Socioeconomic variables
- * Trip Distribution
- * Modal Split
- * Traffic Assignment
 - * Calibrated and validated against ground truths
- * Validation of Other Modules Lacking

Travel Time Data Collection

- * Travel Time
 - * GPS Tracking
 - * Cell Phone Geolocation
 - Toll Tags
 - * Test Vehicle
- * Issues
 - * Privacy Concerns
 - * Accuracy of Travel Time measurement
 - * Availability

Vehicle OD Data Collection Methods

* Vehicle License Plate Recognition

- * Fargo 2008
- * Intercept Surveys
 - * Bismarck 2009 (URS Study)
- * GPS

* Issues

- * Cost
- * Accuracy
- Illegal in some States, ND

 Industry Specification that defines how devices can be interconnect using short range wireless com

How it Works

* Blueto oth signals come from cell phones, PDAs, laptops, GPS, car radios...
** Provisional patent received

Bluetooth Equipment-BluFax

BluFax Equip Specifications

- * Battery, sensor, usb card
- * 50 M radius
 - Height affects detection rates
- Data not directional
- * BluStats Software

Sample BluStats Processed Data

MACID	MACIDNUM	YEAR	MONTH	DAY	HOUR	MIN	SEC	HITS	SPAN_MINUTES
'00054FD88145'	2.28E+10	2011	9	17	8	51	29	2	0.08
'00136C1ACB9A'	8.34E+10	2011	9	17	8	51	39	1	0
'00054FD7B85F'	2.28E+10	2011	9	17	8	54	8	2	0.1
'00054FD85234'	2.28E+10	2011	9	17	8	56	43	1	0
'00121C1461D8'	7.78E+10	2011	9	17	8	58	41	1	0
'E83EB6C840C8'	2.55E+14	2011	9	17	9	2	17	1	0
'00121CFFB8EC'	7.78E+10	2011	9	17	9	26	36	1	0
'001EB221E20B'	1.32E+11	2011	9	17	9	30	58	1	0
'000E9F2914FF'	6.28E+10	2011	9	17	9	34	29	1	0

Bluetooth Travel Time Studies

- * PennDOT, California (San Francisco), I-95 Corridor
 Validation Study (Washington DC Metro)
 - Compared Bluetooth to Toll Tags
 - * Match Rates About 4%
 - Cost is fraction 1/3 Toll Tags
 - * Easy To use
 - Tags must be present to use
 - * Validates Bluetooth as a TT data collection method

Bluetooth for OD Studies

- * Few Studies
- * Advantages
 - Continuous Data Collection
 - * Relatively Cheap
- * Issues
 - * Selection Bias
 - * Geography, population, vehicle type, double counting etc
 - * Statistical Validity
 - * How long should data be collected?

Methodology

- Collect Bluetooth Data at Three External Locations In Fargo Using Blufax Inc Sensors
- Collect Traffic Count Data Using SmartSensor Radar at one Location
- * Compare results with FM TDM
- Propose Model that can be used to Estimate
 Statistically Valid Sample Size for Bluetooth Studies

Data Collection Locations

Results and Analysis

* Are we getting any data

- Verall detection rates for each location
- * Travel time analysis
 - * Compare with TDM
- * OD analysis
 - * Compare with TDM

Descriptive Statistics (Detected)

Time Period	Mean	Std. Dev	Range				
I-29 North							
AM Peak (7-9AM)	21.90	8.37	7-31				
PM Peak (4-6PM)	28.40	4.90	16-34				
AM/PM Peak	25.15	7.46	7-24				
Overall Hourly	19.45	11.82	1-43				
	I-29 South						
AM Peak (7-9AM)	11.0	3.4	5-16				
PM Peak (4-6PM)	15.3	4.8	9-23				
AM/PM Peak	13.2	4.6	5-23				
Overall Hourly	9.5	6.3	1-26				
I-94 East							
AM Peak (7-9AM)	21.0	5.6	12-31				
PM Peak (4-6PM)	34.1	5.5	12-40				
AM/PM Peak	27.6	8.6	12-40				
Overall Hourly	20.7	12.7	1-52				

I-29 N Detections

I-29S Detections

I-94 East Detections

Detection Rates

Bluetooth Sensor	Direction	Directional ADT	Detection Rate (%)
I29North	Southbound	10868	3.17
I29South	Northbound	6198	2.60
l94East	Eastbound	7553	5.09

Bluetooth / 2005 TDM Model Travel Time (Mins) Analysis

Bluetooth / 2005 TDM Model Travel Time (Mins) Analysis

I-29 South

Bluetooth / 2005 TDM Model Travel Time (Mins) Analysis

I-94 East

Bluetooth vs Modeled ODs

Bluetooth						
Desir station	End station					
Degin station	I-29 North	I-29 North I-29 South				
I29North		45	8			
I29South	31		13			
I94East	56	74				

Modeled

D agin station	End station					
Degin station	I-29 North	I-29 South	I-94 East			
I-29 North		94	129			
I-29 South	94		82			
I-94 East	129	82				

Bluetooth vs Modeled OD %

Bluetooth							
Desir station		End station					
Degin station	I-29 North	I-29 South	I-94 East				
I-29 North		3.34%	0.59%				
I-29 South	5.17%		2.17%				
I-94 East	3.91%	5.17%					

Modeled

Decin station	End station				
Begin station	I-29 North	I-29 South	I-94 East		
I-29 North		1.02%	1.40%		
I-29 South	1.60%		1.39%		
I-94 East	1.61%	1.02%			

Sample Size Determination

- * Based on counts what is appropriate number of days to collect data?
- * Hajek Equation

*
$$r = \frac{Z^2 p q}{[(N-1)w^2 + (Z^2 p q)]}$$

- * r = detection rate (unknown and assumed)
- p = estimated proportion of traffic at sensor location between a particular OD pair
- * q = 1-p
- * w= desired accuracy in the estimates of p
- * N = directional traffic count
- * Z= confidence level

Number of Days to Collect Data in FM Metro at 95% Confidence

BluFAX Sensor	Desired Accuracy					
Location	±5%	±10%	±15%	±25%		
I29North	74	19	8	3		
I29South	130	32	14	5		
I94East	107	27	12	4		

Cost Comparison To AVLP

- * Bluetooth ~ \$16,000 for 14 days for 16 units
 - * Fraction of AVLP five hour study done in 2008

Findings and Conclusions

- Bluetooth is efficient in collecting TT Data
- Cost effective in collecting OD data
- Low detection rates in FM area
 - Increase number of days data collected
- For OD data more studies need to be done to eliminate/reduce selection bias
 - * Age groups, vehicle type, etc
- Current TDM overestimates TT and underestimates
 EE OD pairs

Acknowledgements

- * Gom Ale (GRA ATAC who did all the work)
- * BluFax Inc for providing us with test units

